Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA structure-dependent requirements for yeast RAD genes in gene conversion

Abstract

IN Saccharomyces cerevisiae, HO endonuclease-induced mating-type (MAT) switching is a specialized mitotic recombination event in which MAT sequences are replaced by those copied from a distant, unexpressed donor (HML or HMR1,2. The donors have a chromatin structure inaccessible for both transcription and HO cleavage1,2. Here we use physical monitoring of DNA to show that MAT switching is completely blocked at an early step in recombination in strains deleted for the DNA repair genes RAD51, RAD52, RAD54, RAD55 or RAD57. We find, however, that only RAD52 is required when the donor sequence is simultaneously not silenced and located on a plasmid. RAD51, RAD54, RAD55 and RAD57 are still required when the same transcribed donor is on the chromosome. We conclude that recombination in vivo occurs between DNA molecules in chromatin, whose structure significantly influences the outcome. RAD51, RAD54, RAD55 and RAD57 are all required to facilitate strand invasion into otherwise inaccessible donor sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haber, J. E. Trends Genet. 8, 446–452 (1992).

    Article  CAS  Google Scholar 

  2. Strathern, J. N. in Genetic Recombination (eds Kucherlapati, R. & Smith, G. R.) 445–464 (Am. Soc. Microbiol., Washington DC, 1989).

    Google Scholar 

  3. Raveh, D., Hughes, S. H., Shafer, B. K. & Strathern, J. N. Molec. gen. Genet. 220, 33–42 (1989).

    Article  CAS  Google Scholar 

  4. White, C. I. & Haber, J. E. EMBO J. 9, 663–674 (1990).

    Article  CAS  Google Scholar 

  5. Haber, J. E., Ray, B. L., Kolb, J. M. & White, C. I. Proc. natn. Acad. Sci. U.S.A. 90, 3363–3367 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Ivanov, E. L., Sugawara, N., White, C. I., Fabre, F. & Haber, J. E. Molec. cell. Biol. 14, 3414–3425 (1994).

    Article  CAS  Google Scholar 

  7. Malone, R. E. & Esposito, R. E. Proc. natn. Acad. Sci. U.S.A. 77, 503–507 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Aboussekhra, A., Chanet, R., Adjiri, A. & Fabre, F. Molec. cell. Biol. 12, 3224–3234 (1992).

    Article  CAS  Google Scholar 

  9. Petes, T. D., Malone, R. E. & Symington, L. S. in The Molecular and Cellular Biology of the Yeast Saccharomyces (eds Broach, J. R., Pringle, J. & Jones, E. W.) 407–521 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1991).

    Google Scholar 

  10. Fishman-Lobell, J., Rudin, N. & Haber, J. E. Molec. cell. Biol. 12, 1292–1303 (1992).

    Article  CAS  Google Scholar 

  11. Simpson, R. T. Progr. Nucleic Acids Res. molec. Biol. 40, 1896–1899 (1993).

    Google Scholar 

  12. Brand, A. H., Breeden, L., Abraham, J., Sternglanz, R. & Nasmyth, K. Cell 41–48 (1985).

  13. Mahoney, D. J. & Broach, J. R. Molec. cell. Biol. 9, 4621–4630 (1989).

    Article  CAS  Google Scholar 

  14. Collins, I. & Newlon, C. S. Molec. cell. Biol. 14, 3524–3534 (1994).

    Article  CAS  Google Scholar 

  15. Bang, D. D., Verhage, R., Goosen, N., Brouwer, J. & van de Putte, P. Nucleic Acids Res. 20, 3925–3931 (1992).

    Article  CAS  Google Scholar 

  16. Verhage, R. et al. Molec. cell. Biol. 14, 6135–6142 (1994).

    Article  CAS  Google Scholar 

  17. Jensen, R. & Herskowitz, I. Cold Spring Harbor Symp. quant. Biol. 49, 97–104 (1984).

    Article  CAS  Google Scholar 

  18. Nickoloff, J. A., Singer, J. D., Hoekstra, M. F. & Heffron, F. J. molec. Biol. 207, 527–541 (1989).

    Article  CAS  Google Scholar 

  19. Rothstein, R. J. Meth. Enzym. 202–211 (1983).

  20. Basile, G., Aker, M. & Mortimer, R. K. Molec. cell. Biol. 12, 3235–3246 (1992).

    Article  CAS  Google Scholar 

  21. Schild, D., Calderon, I. L., Contopoulou, C. R. & Mortimer, R. K. in (eds Friedberg, E. C. & Bridges, B. A.) Cellular Responses to DNA Damage 417–427 (Liss, New York, 1983).

    Google Scholar 

  22. Rattray, A. & Symington, L. Genetics (in the press).

  23. Lovett, S. T. & Mortimer, R. K. Genetics 116, 547–553 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Milne, G. T. & Weaver, D. T. Genes Dev. 7, 1755–1765 (1993).

    Article  CAS  Google Scholar 

  25. Shinohara, A., Ogawa, H. & Ogawa, T. Cell 69, 457–470 (1992).

    Article  CAS  Google Scholar 

  26. Ogawa, T., Yu, X., Shinohara, A. & Egelman, E. H. Science 259, 1896–1899 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Sung, P. Science 265, 1241–1243 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Kans, J. A. & Mortimer, R. K. Gene 105, 139–140 (1991).

    Article  CAS  Google Scholar 

  29. Lovett, S. T. Gene 142, 103–106 (1994).

    Article  CAS  Google Scholar 

  30. Emery, H. S., Schild, D., Kellogg, D. E. & Mortimer, R. K. Gene 104, 103–106 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugawara, N., Ivanov, E., Fishman-Lobell, J. et al. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373, 84–86 (1995). https://doi.org/10.1038/373084a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373084a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing