10. South, T. L., Blake, P. R., Hare, D. R. \& Summers, M. F. C-terminal retroviral-type zinc finger domain from the HIV-1 nucleocapsid protein is structurally similar to the N -terminal zinc finger domain. Biochemistry 30, 6342-6349 (1991).
11. Luisi, B. F. et al. Crystallographic analysis of the interaction of the glucorticoid receptor with DNA. Nature 352, 497-505 (1991).
12. Marmorstein, R., Carey, M., Ptashne, M. \& Harrison, S. C. DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356, 408-414 (1992).
13. Everett, R. D. et al. A novel arrangement of zinc-binding residues and secondary structure in the C3HC4 motif of an alpha herpes virus protein family. J. Mol. Biol. 234, 1038-1047 (1993).
14. Barlow, P. N., Luisi, B., Milner, A., Elliot, M. \& Everett, R. Structure of the $\mathrm{C}_{3} \mathrm{HC}_{4}$ domain by ${ }^{1} \mathrm{H}$ nuclear magnetic resonance spectroscopy. J. Mol. Biol. 237, 201-211 (1994).
15. Borden, K. L. B. et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 14, 1532-1541 (1995).
16. Phillips, S. E. V. The β-ribbon DNA recognition motif. Ann. Rev. Biophys. Biomol. Struct. 23, 671-701 (1994).
17. Kim, J. L., Nikolov, D. B. \& Burley, S. K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520-527 (1993).
18. Kim, Y., Geiger, J. H., Hahn, S. \& Sigler, P. B. Crystal structure of a yeast TBP-TATA-box complex. Nature 365, 512-520 (1993).
19. Schumacher, M. A., Choi, K. Y., Zalkin, H. \& Brennan, R. G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by α-helices. Science 266, 763-770 (1994).
20. Flick, K. E. et al. Crystallization and preliminary X-ray studies of I-PpoI: a nuclear, intron-encoded homing endonuclease from Physarum polycephalum. Protein Sci. 6, 1-4 (1997).
21. Otwinowski, Z. \& Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326 (1997).
22. Leslie, A. G. W. in Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography (Daresbury Laboratory, Warrington, UK, 1992).
23. CCP4 The SERC (UK) Collaborative Computing Project No. 4, a Suite of Programs for Protein Crystallography (Daresbury Laboratory, Warrington, UK, 1979).
24. QUANTA96 X-ray Structure Analysis User's Reference (Molecular Simulations, San Diego, 1996).
25. Brünger, A. XPLOR version 3.1: A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven, CT, 1992).
26. Laskowski, R. J., Macarthur, M. W., Moss, D. S. \& Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 383-290 (1993).
27. Evans, S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134-138 (1993).

Acknowledgements. We thank D. McHugh, K. Stephens and J. D. Heath for initial subcloning, purification and crystallization studies; R. Strong, K. Zhang and B. Scott for advice during the crystallographic analysis; and the beamline staff at the Advanced Light Source (NLBL laboratories), beamline 5.0 .2 , particularly T. Earnest, for assistance. B.L.S. and R.J.M. are funded for this project by the NIH. K.E.F. was supported by an NIH training grant and the American Heart Associaiton. M.S.J. was supported by an NSF fellowship and an NIH training grant.

Correspondence and requests for materials and coordinates should be addressed to B.L.S. (e-mail: bstoddar@fred.fhcrc.org). Coordinates have been deposited in the Brookhaven Protein Data Bank (accession nos lipp, la73, la74).

corrections

Emergence of symbiosis in peptide self-replication through a hypercyclic network

David H. Lee, Kay Severin, Yohei Yokobayashi
\& M. Reza Ghadiri

Nature 390, 591-594 (1997)
Hypercycles are based on second-order (or higher) autocatalysis and defined by two or more replicators that are connected by
another superimposed autocatalytic cycle. Our study describes a mutualistic relationship between two replicators, each catalysing the formation of the other, that are linked by a superimposed catalytic cycle. Although the kinetic data suggest the intermediary of higherorder species in the autocatalytic processes, the present system should not be referred to as an example of a minimal hypercycle in the absence of direct experimental evidence for the autocatalytic cross-coupling between replicators.

The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus

Hans-Peter Klenk, Rebecca A. Clayton, Jean-Francois Tomb, Owen White, Karen E. Nelson, Karen A. Ketchum, Robert J. Dodson, Michelle Gwinn, Erin K. Hickey, Jeremy D. Peterson, Delwood L. Richardson, Anthony R. Kerlavage, David E. Graham, Nikos C. Kyrpides, Robert D. Fleischmann, John Quackenbush, Norman H. Lee, Granger G. Sutton, Steven Gill, Ewen F. Kirkness, Brian A. Dougherty, Keith McKenney, Mark D. Adams, Brendan Loftus, Scott Peterson, Claudia I. Reich, Leslie K. McNeil, Jonathan H. Badger, Anna Glodek, Lixin Zhou, Ross Overbeek, Jeannine D. Gocayne, Janice F. Weidman, Lisa McDonald, Teresa Utterback, Matthew D. Cotton, Tracy Spriggs, Patricia Artiach, Brian P. Kaine, Sean M. Sykes, Paul W. Sadow, Kurt P. D'Andrea, Cheryl Bowman, Claire Fujii, Stacey A. Garland, Tanya M. Mason, Gary J. Olsen, Claire M. Fraser, Hamilton O. Smith, Carl R. Woese \& J. Craig Venter

Nature 390, 364-370 (1997)
The pathway for sulphate reduction is incorrect as published: in Fig. 3 on page 367, adenylyl sulphate 3-phosphotransferase (cysC) is not needed in the pathway as outlined, as adenylyl sulphate reductase ($a p r A B$) catalyses the first step in the reduction of adenylyl sulphate. The correct sequence of reactions is: sulphate is first activated to adenylyl sulphate, then reduced to sulphite and subsequently to sulphide. The enzymes catalysing these reactions are: sulphate adenylyltransferase (sat), adenylylsulphate reductase $(a p r A B)$, and sulphite reductase $(d s r A B D)$. We thank Jens-Dirk Schwenn for bringing this error to our attention.

The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus

Hans-Peter Klenk ${ }^{*}$, Rebecca A. Clayton ${ }^{*}$, Jean-Francois Tomb ${ }^{*}$, Owen White ${ }^{\star}$, Karen E. Nelson ${ }^{*}$, Karen A. Ketchum*, Robert J. Dodson*, Michelle Gwinn*, Erin K. Hickey*, Jeremy D. Peterson*, Delwood L. Richardson*, Anthony R. Kerlavage*, David E. Graham \dagger, Nikos C. Kyrpides \dagger, Robert D. Fleischmann*, John Quackenbush ${ }^{\star}$, Norman H. Lee ${ }^{\star}$, Granger G. Sutton ${ }^{\star}$, Steven Gill ${ }^{\star}$, Ewen F. Kirkness ${ }^{\star}$, Brian A. Dougherty*, Keith McKenney*, Mark D. Adams* ${ }^{*}$, Brendan Loftus*, Scott Peterson*, Claudia I. Reich \dagger, Leslie K. McNeil \dagger, Jonathan H. Badger \dagger, Anna Glodek ${ }^{*}$, Lixin Zhou ${ }^{*}$, Ross Overbeek \ddagger, Jeannine D. Gocayne ${ }^{*}$, Janice F. Weidman*, Lisa McDonald**, Teresa Utterback*, Matthew D. Cotton**, Tracy Spriggs*, Patricia Artiach ${ }^{*}$, Brian P. Kaine \dagger, Sean M. Sykes ${ }^{*}$, Paul W. Sadow ${ }^{*}$, Kurt P. D'Andrea*, Cheryl Bowman ${ }^{*}$, Claire Fujii ${ }^{*}$, Stacey A. Garland ${ }^{*}$, Tanya M. Mason ${ }^{*}$, Gary J. OIsen \dagger, Claire M. Fraser ${ }^{*}$, Hamilton O. Smith ${ }^{*}$, Carl R. Woese \dagger \& J. Craig Venter ${ }^{\star}$
* The Institute for Genomic Research (TIGR), Rockville, Maryland 20850, USA
\dagger Department of Microbiology, University of Illinois, Champaign-Urbana, Illinois 61801, USA
\ddagger Mathematics and Computer Science Division, Argonne National Laboratory, Illinois 60439, USA

Abstract

Archaeoglobus fulgidus is the first sulphur-metabolizing organism to have its genome sequence determined. Its genome of $\mathbf{2 , 1 7 8 , 4 0 0}$ base pairs contains 2,436 open reading frames (ORFs). The information processing systems and the biosynthetic pathways for essential components (nucleotides, amino acids and cofactors) have extensive correlation with their counterparts in the archaeon Methanococcus jannaschif. The genomes of these two Archaea indicate dramatic differences in the way these organisms sense their environment, perform regulatory and transport functions, and gain energy. In contrast to M. jannaschii, A. fulgidus has fewer restriction-modification systems, and none of its genes appears to contain inteins. A quarter (651 ORFs) of the A. fulgidus genome encodes functionally uncharacterized yet conserved proteins, two-thirds of which are shared with M. jannaschif (428 ORFs). Another quarter of the genome encodes new proteins indicating substantial archaeal gene diversity.

Biological sulphate reduction is part of the global sulphur cycle, ubiquitous in the earth's anaerobic environments, and is essential to the basal workings of the biosphere. Growth by sulphate reduction is restricted to relatively few groups of prokaryotes; all but one of these are Eubacteria, the exception being the archaeal sulphate reducers in the Archaeoglobales ${ }^{1,2}$. These organisms are unique in that they are unrelated to other sulphate reducers, and because they grow at extremely high temperatures ${ }^{3}$. The known Archaeoglobales are strict anaerobes, most of which are hyperthermophilic marine sulphate reducers found in hydrothermal environments ${ }^{2,4}$ and in subsurface oil fields ${ }^{5}$. High-temperature sulphate reduction by Archaeoglobus species contributes to deep subsurface oil-well 'souring' by producing iron sulphide, which causes corrosion of iron and steel in oil- and gas-processing systems ${ }^{5}$.

Archaeoglobus fulgidus VC-16 (refs 2, 4) is the type strain of the Archaeoglobales. Cells are irregular spheres with a glycoprotein envelope and monopolar flagella. Growth occurs between 60 and $95^{\circ} \mathrm{C}$, with optimum growth at $83^{\circ} \mathrm{C}$ and a minimum division time of 4 h . The organism grows organoheterotrophically using a variety of carbon and energy sources, but can grow lithoautotrophically on hydrogen, thiosulphate and carbon dioxide ${ }^{6}$. We sequenced the genome of A. fulgidus strain VC-16 as an example of a sulphurmetabolizing organism and to gain further insight into the Archaea ${ }^{7,8}$ through genomic comparison with Methanococcus jannaschii ${ }^{9}$.

General features of the genome

The genome of A. fulgidus consists of a single, circular chromosome of $2,178,400$ base pairs (bp) with an average of $48.5 \% \mathrm{G}+\mathrm{C}$ content
(Fig. 1). There are three regions with low $\mathrm{G}+\mathrm{C}$ content ($<39 \%$), two rich in genes encoding enzymes for lipopolysaccharide (LPS) biosynthesis, and two regions of high G+C content ($>53 \%$), containing genes for large ribosomal RNAs, proteins involved in haem biosynthesis (hemAB), and several transporters (Table 1). Because the origins of replication in Archaea are not characterized, we arbitrarily designated base pair one within a presumed noncoding region upstream of one of three areas containing multiple short repeat elements.
Open reading frames. Two independent coding analysis programs and BLASTX ${ }^{10}$ searches (see Methods) predicted 2,436 ORFs (Figs 1, 2 , Tables 1,2) covering 92.2% of the genome. The average size of the A. fulgidus ORFs is 822 bp , similar to that of M. jannaschii (856 bp), but smaller than that in the completely sequenced eubacterial genomes (949 bp). All ORFs were searched against a non-redundant protein database, resulting in 1,797 putative identifications that were assigned biological roles within a classification system adapted from ref. 11. Predicted start codons are 76\% ATG, 22\% GTG and 2\% TTG. Unlike M. jannaschii, where 18 inteins were found in coding regions, no inteins were identified in A. fulgidus. Compared with M. jannaschii, A. fulgidus contains a large number of gene duplications, contributing to its larger genome size. The average protein relative molecular mass (M_{r}) in A. fulgidus is 29,753, ranging from 1,939 to 266,571 , similar to that observed in other prokaryotes. The isoelectric point (pI) of predicted proteins among sequenced prokaryotes exhibits a bimodal distribution with peaks at pIs of approximately 5.5 and 10.5. The exceptions to this are Mycoplasma genitalium in which the distribution is skewed towards high pI

Figure 1 Circular representation of the A. fulgidus genome. The outer circle shows predicted protein-coding regions on the plus strand classified by function according to the colour code in Fig. 2 (except for unknowns and hypotheticals, which are in black). Second circle shows predicted protein-coding regions on the minus strand. Third and fourth circles show IS elements (red) and other repeats (green) on the plus and minus strand. Fifth and sixth circles show tRNAs (blue), rRNAs (red) and sRNAs (green) on the plus and minus strand, respectively.

Table 1 Genome features

General		
Chromosome size:	2,178,400 bp	
Protein coding regions:	92.2\%	
Stable RNAs:	0.4\%	
Predicted protein coding sequences:	2,436 (1.1 per kb)	
Identified by database match:	1,797	
putative function assigned:	1,096	
homologues of M. jannaschii ORFs:	916	
conserved hypothetical proteins:	651	
No database match:	639	
Members of 242 paralogous families:	719	
Members of 158 families with known functions:	475	
Stable RNAs	Coordinates	
16S rRNA:	1,790,478-1,788,987	
23S rRNA	1,788,751-1,785,820	
5 S rRNA:	81,144-81,021	
7S RNA:	798,067-798,376	
RNase P:	86,281-86,032	
46 species of tRNA:	no significant clusters Asp ${ }^{\text {GUC }}$ GluUCC Leu $^{\text {CAA }} \operatorname{Trp}{ }^{\text {CCA }}$ Tyr ${ }^{\text {GUA }}$	
tRNAs with 15-62 bp introns:		
Distinct G+C content regions Coordinates		
HGC-1, >53\% G+C	1,786,000-1,797,000	
HGC-2, >53\% G+C	2,158,000-2,159,000	
LGC-1, <39\% G+C	281,000-284,000	
LGC-2, <39\% G+C	544,000-550,000	
LGC-3, <39\% G+C	1,175,000-1,177,000	
Short, non-coding repeats		
SR-1A, CTTTCAATCCCATTTTGGTCTGATTTCAAC 147-4,213		
SR-1B, CTTTCAATCCCATTTTGGTCTGATTTCAAC 398,368-401,590		
SR-2, CTTTCAATCTCCATTTTCAGGGCCTCCCTTTCTTA 1,690,930-1,694,04		
Long, coding repeats	Length	Copy number
LR-01 NADH-flavin oxidoreductase	1,886 bp	2 copies
LR-02 NifS, NifU + ORF	1,549 bp	2 copies
LR-03 ISA1214 putative transposase + ISORF2	1,214 bp	6 copies
LR-04 ISA1083 putative transposase + ISORF2	1,083 bp	3 copies
LR-05 type II secretion system protein	1,014 bp	4 copies
LR-06 ISA0963 putative transposase	963 bp	7 copies
LR-07 homologue of MJ0794	836 bp	3 copies
LR-08 conserved hypothetical protein	696 bp	2 copies
LR-09 conserved hypothetical protein	628 bp	2 copies

(median, 9.8) and A. fulgidus where the skew is toward low pI (median, 6.3).
Multigene families. In A. fulgidus 719 genes (30% of the total) belong to 242 families with two or more members (Table 1). Of these families, 157 contained genes with biological roles. Most of these families contain genes assigned to the 'energy metabolism', 'transport and binding proteins', and 'fatty acid and phospholipid metabolism' categories (Table 2). The superfamily of ATP-binding subunits of ABC transporters is the largest, containing 40 members. The importance of catabolic degradation and signal recognition systems is reflected by the presence of two large superfamilies: acylCoA ligases and signal-transducing histidine kinases. A. fulgidus does not contain a homologue of the large 16-member family found in M. jannaschii ${ }^{9}$.
Repetitive elements. Three regions of the A. fulgidus genome contain short ($<40 \mathrm{bp}$) direct repeats (Table 1). Two regions (SR1A and SR-1B) contain 48 and 60 copies, respectively, of an identical $30-\mathrm{bp}$ repeat interspersed with unique sequences averaging 40 bp . The third region (SR-2) contains 42 copies of a 37-bp repeat similar in sequence to the SR-1 repeat and interspersed with unique sequence averaging 41 bp . These repeated sequences are similar to the short repeated sequences found in M. jannaschii.

Nine classes of long ($>500 \mathrm{bp}$) repeated sequences with $\geqslant 95 \%$ sequence identity were found (LR1-LR9; Table 1). LR-3 is a novel element with 14 -bp inverted repeats and two genes, one of which has weak similarity to a transposase from Halobacterium salinarium. One copy of LR-3 interrupts AF2090, a homologue of a large M. jannaschii gene encoding a protein of unknown function. LR-4 and LR-6 encode putative transposases not identified in M. jannaschii that may represent IS elements. The remaining LR elements are not similar to known IS elements.

Central intermediary and energy metabolism

Sulphur oxide reduction may be the dominant respiratory process in anaerobic marine and freshwater environments, and is an important aspect of the sulphur cycle in anaerobic ecosystems ${ }^{12}$. In this pathway, sulphate $\left(\mathrm{SO}_{4}^{2-}\right)$ is first activated to adenylylsulphate (adenosine-5'-phosphosulphate; APS), then reduced to sulphite and subsequently to sulphide ${ }^{1,13}$ (Fig. 3). The most important enzyme in dissimilatory sulphate reduction, adenylylsulphate reductase, reduces the activated sulphate to sulphite, releasing AMP. In A. fulgidus, the APS reductase has a high degree of similarity and identical physiological properties to APS reductases in sulphate-reducing delta proteobacteria ${ }^{14}$. A desulphoviridin-type sulphite reductase then adds six electrons to sulphite to produce sulphide. As in the Eubacteria, three sulphite-reductase genes, $d s r A B D$, constitute an operon. The genes for adenylylsulphate reductase and sulphate adenylyltransferase reside in a separate operon. In A. fulgidus, sulphate can be replaced as an electron acceptor by both thiosulphate $\left(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right)$ and sulphite $\left(\mathrm{SO}_{3}^{2-}\right)$, but not by elemental sulphur.
A. fulgidus VC-16 has been shown to use lactate, pyruvate, methanol, ethanol, 1-propanol and formate as carbon and energy sources ${ }^{2}$. Glucose has been described as a carbon source ${ }^{1}$, but neither an uptake-transporter nor a catabolic pathway could be identified. Although it has been reported that A. fulgidus is incapable of growth on acetate ${ }^{6}$, multiple genes for acetyl-CoA synthetase (which converts acetate to acetyl-CoA) were found. The organism may degrade a variety of hydrocarbons and organic acids because of the presence of 57β-oxidation enzymes, at least one lipase, and a minimum of five types of ferredoxin-dependent oxidoreductases (Fig. 3). The predicted β-oxidation system is similar to those in Eubacteria and mitochondria, and has not previously been described in the Archaea. Escherichia coli requires both the fadD and fadL gene products to import long-chain fatty acids across the cell envelope into the cytosol ${ }^{15}$. A. fulgidus has 14 acyl-CoA ligases related to FadD, but as expected given that it has no outer membrane, no

FadL. In E. coli, FadB has several metabolic functions, but in A. fulgidus these functions seem to be distributed among separate enzymes. For example, AF0435 encodes an orthologue of enoylCoA hydratase and resembles the amino-terminal domain of FadB. This gene is immediately upstream of a gene encoding an orthologue of 3-hydroxyacyl-CoA dehydrogenase that resembles the car-boxy-terminal domain of FadB.
Acetyl-CoA is degraded by A. fulgidus through a C_{1}-pathway, not by the citric acid cycle or glyoxylate bypass ${ }^{6,16,17}$. This degradation is catalysed through the carbon monoxide dehydrogenase (CODH) pathway that consists of a five-subunit acetyl-CoA decarboxylase/ synthase complex (ACDS) and five enzymes that are typically involved in methanogenesis ${ }^{18}$. In A. fulgidus, however, reverse methanogenesis occurs, resulting in CO_{2} production. All of the enzymes and cofactors of methanogenesis from formylmethanofuran to N^{5}-methyltetrahydromethanopterin are used, but the absence of methyl-CoM reductase eliminates the possibility of methane production by conventional pathways. Production of trace amounts of methane $\left(<0.1 \mu \mathrm{~mol} \mathrm{ml}^{-1}\right)^{19}$ is probably a result of the reduction of N^{5}-methyltetrahydromethanopterin to methane and tetrahydromethanopterin by carbon monoxide (CO) dehydrogenase.
A. fulgidus also contains genes suggesting it has a second CO dehydrogenase system, homologous to that which enables Rhodospirillum rubrum to grow without light using CO as its sole energy source. Genes were detected for the nickel-containing CO dehydrogenase (CooS), an iron-sulphur redox protein, and a protein associated with the incorporation of nickel in CooS. These represent elements of a system that could catalyse the conversion of CO and $\mathrm{H}_{2} \mathrm{O}$ to CO_{2} and H_{2}.
In contrast to M. jannaschii, A. fulgidus contains genes representing multiple catabolic pathways. Systems include CoA-SH-dependent ferredoxin oxidoreductases specific for pyruvate, 2-ketoisovalerate, 2-ketoglutarate and indolepyruvate, as well as a 2 -oxoacid with little substrate specificity ${ }^{20,21}$. Four genes with similarity to the tungstencontaining aldehyde ferredoxin oxidoreductase were also found ${ }^{22}$.

Biochemical pathways characteristic of eubacterial metabolism, including the pentose-phosphate pathway, the Entner-Doudoroff pathway, glycolysis and gluconeogenesis, are either completely absent or only partly represented (Fig. 3). A. fulgidus does not have typical eubacterial polysaccharide biosynthesis machinery, yet it has been shown to produce a protein and carbohydrate-containing biofilm ${ }^{23}$. Nitrogen is obtained by importing inorganic molecules or degrading amino acids (Fig. 3); neither a glutamate dehydrogenase nor a relevant fix or nif gene is present.

The $\mathrm{F}_{420} \mathrm{H}_{2}$:quinone oxidoreductase complex ${ }^{24}$ is recognized as

Figure $\mathbf{2}$ Linear representation of the A. fulgidus genome illustrating the location of each predicted protein-coding region, RNA gene, and repeat element in the genome. Symbols for the transporters are as follows: AsO, arsenite; COH , sugar; P_{i}, phosphate; aa2, dipeptide; $\mathrm{NH}_{4}^{\dagger}$, ammonium; a / o, arginine/lysine/ornithine; s/ p, spermidine/putrescine; glyc, glycerol; Cl', chloride; Fe^{2+}, iron(II); Fe^{3+}, iron(III); I, L, V, branched-chain amino acids; P, proline; pan, pantothenate; rib, ribose; lac, lactate; $\mathrm{Mg}^{2+} / \mathrm{Co}^{2+}$, magnesium and cobalt; gln, glutamine; NO^{3-}, nitrate; ox/for, oxalate/formate; maln, malonic acid; Hg^{2+}, mercury; phs, polysaccharide; SO_{4}^{2-}, sulphate; OCN${ }^{-}$, cyanate; hex, hexuronate; phs, polysialic acid; K^{+}, potassium channel; $\mathrm{H}^{+} / \mathrm{Na}^{+}$, sodium/proton antiporter; $\mathrm{Na}^{+} / \mathrm{Cl}^{-}$, sodium- and chloridedependent transporter; P/G, osmoprotection protein; Cu^{2+}, copper-transporting ATPase; +?, cation-transporting ATPase; ?, ABC-transporter without known function. Triplets associated with tRNAs represent the anticodon sequence. Numbers associated with GES represent the number of membrane-spanning domains (MSDs) according to Goldman, Engelman and Steiz scale as determined by TopPred ${ }^{39}$. Genes whose identification is based on genes in M. jannaschii are indicated by circles. Of the 236 proteins containing at least one MSD, 124 of these had two or more MSDs.
the main generator of proton-motive force. However, our analysis indicates the presence of heterodisulphide reductase and several molybdopterin-binding oxidoreductases, with polysulphide, nitrate, dimethyl sulphoxide, and thiosulphate as potential substrates, which might contribute to energizing the cell membrane. A. fulgidus
contains a large number of flavoproteins, iron-sulphur proteins and iron-binding proteins that contribute to the general intracellular flow of electrons (Fig. 3). Detoxification enzymes include a peroxidase/catalase, an alkyl-hydroperoxide reductase, arsenate reductase, and eight NADH oxidases, presumably catalysing the

Figure 3 An integrated view of metabolism and solute transport in A. fulgidus. Biochemical pathways for energy production, biosynthesis of organic compounds, and degradation of amino acids, aldehydes and acids are shown with the central components of A. fulgidus metabolism, sulphate, lactate and acetyl-CoA highlighted. Pathways or steps for which no enzymes were identified are represented by a red arrow. A question mark is attached to pathways that could not be completely elucidated. Macromolecular biosynthesis of RNA, DNA and ether lipids have been omitted. Membrane-associated reactions that establish the proton-motive force (PMF) and generate ATP (electron transport chain and $\mathrm{V}_{1} \mathrm{~V}_{0}$-ATPase) are linked to cytosolic pathways for energy production. The oxalate-formate antiporters (oxIT) may also contribute to the PMF by mediating electrogenic anion exchange. Each gene product with a predicted function in ion or solute transport is illustrated. Proteins are grouped by substrate specificity with transporters for cations (green), anions (red), carbohydrates/organic alcohols/ acids (yellow), and amino acids/peptides/amines (blue) depicted. Ion-coupled permeases are represented by ovals (mae1, exuT, panF, IctP, arsB, cynX, napA/nhe2, amt, feoB, trkAH, cat and putP encode transporters for malate, hexuronate, pantothenate, lactate, arsenite, cyanate, sodium, ammonium, iron (II), potassium, arginine/lysine and proline, respectively). ATP-binding cassette (ABC) transport systems are shown as composite figures of ovals, diamonds and circles (proWX, gln $H P Q$, dppABCDF, potABCD, braCDEFG, hemUV, nrtBC, cysAT, $p s t A B C$, rbs $A C$, rfb $A B$ correspond to gene products for proline, glutamine, dipeptide,
spermidine/putrescine, branch-chain amino acids, iron (III), nitrate, sulphate, phosphate, ribose and polysialic acid transport, respectively). All other porters drawn as rectangles (g/pF, glycerol uptake facilitator; copB, copper transporting ATPase; corA, magnesium and cobalt transporter). Export and import of solutes is designated by arrows. The number of paralogous genes encoding each protein is indicated in brackets for cytoplasmic enzymes, or within the figure for transporters. Abbreviations: acs, acetyl-CoA synthetase; aor, aldehyde ferredoxin oxidoreductase; aprAB, adenylylsulphate reductase; $a s p B C$, aspartate aminotransferase; $c d h$, acetyl-CoA decarbonylase/synthase complex; cysC, adenylylsulphate 3-phosphotransferase; dld, D-lactate dehydrogenase; dsrABD, sulphite reductase; eno, enolase; fadA/acaB, 3-ketoacyl-CoA thiolase; fadD, long-chain-fatty-acid-CoA ligase; fad, enoyl-CoA hydratase; fadE (acd), acyl-CoA dehydrogenase; g/pA, glycerol-3-phosphate dehydrogenase; glpK, glycerol kinase; gltB, glutamate synthase; hbd, 3-hydroxyacyl-CoA dehydrogenase; i/vE, branched-chain aminoacid aminotransferase; ior $A B$, indolepyruvate ferredoxin oxidoreductase; $k o r A B D G$, 2-ketoglutarate ferredoxin oxidoreductase; //d D, L-lactate dehydrogenase; $m c m A$, methylmalonyl-CoA mutase; $m d h A$, L-malate dehydrogenase; oad $A B$, oxaloacetate decarboxylase; orAB, 2-oxoacid ferredoxin oxidoreductase; pflD, pyruvate formate lysase 2; porABDG, pyruvate ferredoxin oxidoreductase; ppsA, phosphoenolpyruvate synthase; $p r s A$, ribose-phosphate pyrophosphokinase; sucAB, 2-ketoglutarate dehydrogenase; sat, sulphate adenylyltransferase; TCA, tricarboxylic acid cycle; vorABDG, 2-ketoisovalerate ferredoxin oxidoreductase.
four-electron reduction of molecular oxygen to water, with the concurrent regeneration of NAD.

Transporters

A. fulgidus may synthesize several transporters for the import of carbon-containing compounds, probably contributing to its ability to switch from autotrophic to heterotrophic growth ${ }^{5}$. Both M. jannaschii and A. fulgidus have branched-chain amino-acid ABC transport systems and a transporter for the uptake of arginine and lysine. A. fulgidus encodes proteins for dipeptide, spermidine/ putrescine, proline/glycine-betaine and glutamine uptake, as well as transporters for sugars and acids, rather like the membrane systems described in eubacterial heterotrophs. These compounds provide the necessary substrates for numerous biosynthetic and degradative pathways (Fig. 3).

Many A. fulgidus redox proteins are predicted to require iron. Correspondingly, iron transporters have been identified for the import of both oxidized $\left(\mathrm{Fe}^{3+}\right)$ and reduced $\left(\mathrm{Fe}^{2+}\right)$ forms of iron. There are duplications in functional and regulatory genes in both systems. The uptake of Fe^{3+} may depend on haemin or a haeminlike compound because A. fulgidus has orthologues to the eubacterial hem transport system proteins, HemU and HemV. A. fulgidus may also use the regulatory protein Fur to modulate Fe^{3+} transport; this protein is not present in M. jannaschii. Fe^{2+} uptake occurs through a modified Feo system containing FeoB. This is the third example of an isolated feoB gene: M. jannaschii and Helicobacter pylori also appear to lack feoA, implying that FeoA is not essential for iron transport in these organisms.

A complex suite of proteins regulates ionic homeostasis. Ten distinct transporters facilitate the flux of the physiological ions K^{+}, $\mathrm{Na}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{Mg}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}^{2-}$ and inorganic phosphate $\left(\mathrm{P}_{\mathrm{i}}\right)$. Most of these transporters have homologues in M. jannaschii and are therefore likely to be critical for nutrient acquisition during autotrophic growth. A. fulgidus has additional ion transporters for the elimination of toxic compounds including copper, cyanate and arsenite. As in M. jannaschii, the A. fulgidus genome contains two paralogous operons of cobalamin biosynthesis-cobalt transporters, cbiMQO.

Sensory functions and regulation of gene expression

Consistent with its extensive energy-producing metabolism and versatile system for carbon utilization, A. fulgidus has complex sensory and regulatory networks. These networks contain over 55 proteins with presumed regulatory functions, including members of the ArsR, AsnC and Sir2 families, as well as several irondependent repressor proteins. There are at least 15 signal-transducing histidine kinases, but only nine response regulators; this difference suggests there is a high degree of cross-talk between kinases and regulators. Only four response regulators appear to be in operons with histidine kinases, including those in the methyldirected chemotaxis system (Che), which lies adjacent to the flagellar biosynthesis operon. Although rich in regulatory proteins, A. fulgidus apparently lacks regulators for response to amino-acid and carbon starvation as well as to DNA damage. Finally, A. fulgidus contains a homologue of the mammalian mitochondrial benzodiazepine receptor, which functions as a sensor in signal-transduction pathways ${ }^{25}$. These receptors have been previously identified only in Proteobacteria and Cyanobacteria ${ }^{25}$.

Replication, repair and cell division

A. fulgidus possesses two family B DNA polymerases, both related to the catalytic subunit of the eukaryal delta polymerase, as previously observed in the Sulfolobales ${ }^{26}$. It also has a homologue of the proofreading ϵ subunit of E. coli Pol III, not previously observed in the Archaea. The DNA repair system is more extensive than that found in M. jannaschii, including a homologue of the eukaryal Rad25, a 3-methyladenine DNA glycosylase, and exodeoxynuclease
III. As well as reverse gyrase, topoisomerase I (ref. 9), and topoisomerase VI (ref. 27), the genes for the first archaeal DNA gyrase were identified.
A. fulgidus lacks a recognizable type II restriction-modification system, but contains one type I system. In contrast, two type II and three type I systems were identified in M. jannaschii. No homologue of the M. jannaschii thermonuclease was identified.
The cell-division machinery is similar to that of M. jannaschii, with orthologues of eubacterial fts and eukaryal $c d c$ genes. However, several $c d c$ genes found in M. jannaschii, including homologues of $c d c 23, c d c 27, c d c 47$ and $c d c 54$, appear to be absent in A. fulgidus.

Transcription and translation

A. fulgidus and M. jannaschii have transcriptional and translational systems distinct from their eubacterial and eukaryal counterparts. In both, the RNA polymerase contains the large universal subunits and five smaller subunits found in both Archaea and eukaryotes. Transcription initiation is a simplified version of the eukaryotic mechanism ${ }^{28,29}$. However, A. fulgidus alone has a homologue of eukaryotic TBP-interacting protein 49 not seen in M. jannaschii, but apparently present in Sulfolobus solfactaricus.

Translation in A. fulgidus parallels M. jannaschii with a few exceptions. The organism has only one rRNA operon with an AlatRNA gene in the spacer and lacks a contiguous 5S rRNA gene. Genes for 46 tRNAs were identified, five of which contain introns in the anticodon region that are presumably removed by the intron excision enzyme EndA. The gene for selenocysteine tRNA (SelC) was not found, nor were the genes for SelA, SelB and SelD. With the exception of Asp-tRNA ${ }^{\text {GTC }}$ and Val-tRNA ${ }^{\text {CAC }}$, tRNA genes are not linked in the A. fulgidus genome. The RNA component of the tRNA maturation enzyme RNase P is present. Both A. fulgidus and M. jannaschii appear to possess an enzyme that inserts the tRNAmodified nucleoside archaeosine, but only A. fulgidus has the related enzyme that inserts the modified base queuine.
Both A. fulgidus and M. jannaschii lack glutamine synthetase and asparagine synthetase; the relevant tRNAs are presumably aminoacylated with glutamic and aspartic acids, respectively. An enzymatic in situ transamidation then converts the amino acid to its amide form, as seen in other Archaea and in Gram-positive Eubacteria ${ }^{30}$. Indeed, genes for the three subunits of the Glu-tRNA amidotransferase (gatABC) have been identified in A. fulgidus. The Lys aminoacyl-tRNA synthetase in both organisms is a class I-type, not a class II-type ${ }^{31}$. A. fulgidus possesses a normal tRNA synthetase for both Cys and Ser, unlike M. jannaschii in which the former was not identifiable and the latter was unusual ${ }^{9}$.
M. jannaschii has a single gene belonging to the TCP-1 chaperonin family, whereas A. fulgidus has two that encode subunits α and β of the thermosome. Phylogenetic analysis of the archaeal TCP-1 family indicates that these A. fulgidus genes arose by a recent speciesspecific gene duplication, as is the case for the two subunits of the Thermoplasma acidophilum thermosome ${ }^{32}$ and the Sulfolobus shibatae rosettasome ${ }^{33}$. As in M. jannaschii, no dnaK gene was identified.

Biosynthesis of essential components

Like most autotrophic microorganisms, A. fulgidus is able to synthesize many essential compounds, including amino acids, cofactors, carriers, purines and pyrimidines. Many of these biosynthetic pathways show a high degree of conservation between A. fulgidus and M. jannaschii. These two Archaea are similar in their biosynthetic pathways for siroheme, cobalamin, molybdopterin, riboflavin, thiamin and nictotinate, the role category with greatest conservation between these two organisms being amino-acid biosynthesis. Of 78 A . fulgidus genes assigned to amino-acid biosynthetic pathways, at least 73 (94\%) have homologues in M. jannaschii. For both archaeal species, amino-acid biosynthetic pathways resemble those of Bacillus subtilis more closely than
those of E. coli. For example, in A. fulgidus and M. jannaschii, tryptophan biosynthesis is accomplished by seven enzymes, TrpA, B, C, D, E, F, G as in B. subtilis, rather than by five enzymes, $\operatorname{TrpA}, \mathrm{B}$, C, D, E (including the bifunctional TrpC and TrpD) as found in E. coli.

No biotin biosynthetic genes were identified, yet biotin can be detected in A. fulgidus cell extracts ${ }^{34}$, and several genes encode a biotin-binding consensus sequence. Similarly, A. fulgidus lacks the genes for pyridoxine biosynthesis although pyridoxine can be found in cell extracts (albeit at lower levels than seen in E. coli and several Archaea ${ }^{34}$). No gene encoding ferrochelatase, the terminal enzyme in haem biosynthesis, has been identified, although A. fulgidus is known to use cytochromes ${ }^{34}$. These cofactors may be obtained by mechanisms that we have not recognized. Although all of the enzymes required for pyrimidine biosynthesis appear to be present, three enzymes in the purine pathway (GAR transformylase, AICAR formyltransferase and the ATPase subunit of AIR carboxylase) have not been identified, presumably because they exist as new isoforms.

The Archaea share a unique cell membrane composed of ether lipids containing a glycerophosphate backbone with a $2,3-s n$ stereochemistry ${ }^{35}$ for which there are multiple biosynthetic pathways ${ }^{36}$. In the case of Halobacterium cutirubrum, the backbone is apparently obtained by enantiomeric inversion of $s n$-glycerol-3phosphate; in Sulfolobus acidocaldarius and Methanobacterium thermoautotrophicum, $s n$-glycerol-1-phosphate dehydrogenase builds the backbone from dihydroxyacetonephosphate. An orthologue of sn-glycerol-1-phosphate dehydrogenase has been identified in A. fulgidus, suggesting that the latter pathway is present.

Conclusions

Although A. fulgidus has been studied since its discovery ten years ago^{1}, the completed genome sequence provides a wealth of new information about how this unusual organism exploits its environment. For example, its ability to reduce sulphur oxides has been well characterized, but genome sequence data demonstrate that A. fulgidus has a great diversity of electron transport systems, some of unknown specificity. Similarly, A. fulgidus has been characterized as a scavenger with numerous potential carbon sources, and its gene complement reveals the extent of this capability. A. fulgidus appears to obtain carbon from fatty acids through β-oxidation, from degradation of amino acids, aldehydes and organic acids, and perhaps from CO.
A. fulgidus has extensive gene duplication in comparison with other fully sequenced prokaryotes. For example, in the fatty acid and phospholipid metabolism category, there are 10 copies of 3-hydroxyacyl-CoA dehydrogenase, 12 copies of 3-ketoacyl-CoA thiolase, and 12 of acyl-CoA dehydrogenase. The duplicated proteins are not identical, and their presence suggests considerable metabolic differentiation, particularly with respect to the pathways for decomposing and recycling carbon by scavenging fatty acids. Other categories show similar, albeit less dramatic, gene redundancy. For example, there are six copies of acetyl-CoA synthetase and four aldehyde ferredoxin oxidoreductases for fermentation, as well as four copies of aspartate aminotransferase for amino-acid biosynthesis. These observations, together with the large number of paralogous gene families, suggest that gene duplication has been an important evolutionary mechanism for increasing physiological diversity in the Archaeoglobales.

A comparison of two archaeal genomes is inadequate to assess the diversity of the entire domain. Given this caveat, it is nevertheless possible to draw some preliminary conclusions from the comparison of M. jannaschii and A. fulgidus. A comparison of the gene content of these Archaea reveals that gene conservation varies significantly between role categories, with genes involved in transcription, translation and replication highly conserved; approximately 80% of the A. fulgidus genes in these categories have homologues in M. jannaschii. Biosynthetic pathways are also
highly conserved, with approximately 80% of the A. fulgidus biosynthetic genes having homologues in M. jannaschii. In contrast, only 35% of the A. fulgidus central intermediary metabolism genes have homologues, reflecting their minimal metabolic overlap.

Over half of the A. fulgidus ORFs $(1,290)$ have no assigned biological role. Of these, 639 have no database match. The remaining 651, designated 'conserved hypothetical proteins', have sequence similarity to hypothetical proteins in other organisms, two-thirds with apparent homologues in M. jannaschii. These shared hypothetical proteins will probably add to our understanding of the genetic repertoire of the Archaea. Analysis of the A. fulgidus and other archaeal and eubacterial genomes will provide the information necessary to begin to define a core set of archaeal genes, as well as to better understand prokaryotic diversity.

Methods

Whole-genome random sequencing procedure. The type strain, A. fulgidus VC-16, was grown from a culture derived from a single cell isolated by optical tweezers ${ }^{37}$ and provided by K. O. Stetter (University of Regensburg). Cloning, sequencing and assembly were essentially as described previously for genomes sequenced by TIGR ${ }^{9,38-40}$. One small-insert and one medium-insert plasmid library were generated by random mechanical shearing of genomic DNA. One large-insert lambda (λ) library was generated by partial Tsp509I digestion and ligation to λ-DASHII/EcoRI vector (Stratagene). In the initial random sequencing phase, 6.7 -fold sequence coverage was achieved with 27,150 sequences from plasmid clones (average read length 500 bases) and 1,850 sequences from λ-clones. Both plasmid and λ-sequences were jointly assembled using TIGR assembler ${ }^{41}$, resulting in 152 contigs separated by sequence gaps and five groups of contigs separated by physical gaps. Sequences from both ends of 560λ-clones served as a genome scaffold, verifying the orientation, order and integrity and the contigs. Sequence gaps were closed by editing the ends of sequence traces and/or primer walking on plasmid or λ-clones clones spanning the respective gap. Physical gaps were closed by combinatorial polymerase chain reaction (PCR) followed by sequencing of the PCR product. At the end of gap closure, 90 regions representing 0.33% of the genome had only single-sequence coverage. These regions were confirmed with terminator reactions to ensure a minimum of 2-fold sequence coverage for the whole genome. The final genome sequence is based on 29,642 sequences, with a 6.8 -fold sequence coverage. The linkage between the terminal sequences of 2,101 clones from the small-insert plasmid library (average size $1,419 \mathrm{bp}$) and 8,726 clones from the medium-insert plasmid library (average size $2,954 \mathrm{bp}$) supported the genome scaffold formed by the λ-clones (average size $16,381 \mathrm{bp}$), with 96.9% of the genome covered by λ-clones. The reported sequence differs in 20 positions from the 14,389 bp of DNA in a total of 11 previously published A. fulgidus genes.
ORF prediction and gene family identification. Coding regions (ORFs) were identified using a combination strategy based on two programs. Initial sets of ORFs were derived with GeneSmith (H.O.S., unpublished), a program that evaluates ORF length, separation and overlap between ORFs, and with CRITICA (J.H.B. \& G.J.O., unpublished), a coding region identification tool using comparative analysis. The two largely overlapping sets of ORFs were merged into one joint set containing all members of both initial sets. ORFs were searched against a non-redundant protein database using BLASTX ${ }^{10}$ and those shorter than 30 codons 'coding' for proteins without a database match were eliminated. Frameshifts were detected and corrected where appropriate as described previously ${ }^{40}$. Remaining frameshifts are considered authentic and corresponding regions were annotated as 'authentic frameshift'. In total, 527 hidden Markov models, based upon conserved protein families (PFAM version 2.0), were searched with HMMER to determine ORF membership in families and superfamilies ${ }^{42}$. Families of paralogous genes were constructed as described previously y^{40}. TopPred ${ }^{43}$ was used to identify membrane-spanning domains in proteins.
Received 9 September; accepted 4 November 1997.

1. Stetter, K. O., Lauerer, G., Thomm, M. \& Neuner, A. Isolation of extremely thermophilic sulfate reducers: Evidence for a novel branch of archaebacteria. Science 236, 822-824 (1987).
2. Stetter, K. O., in The Prokaryotes (eds Balows, A., Trüper, H. G., Dworkin, M., Harder, W. \& Schleifer, K. H.) 707-711 (Springer, Berlin, 1992).
3. Stetter, K. O. Microbial life in hyperthermal environments: Microorganisms from exotic environments continue to provide surprises about life's extremities. ASM News 61, 285-290 (1995).
4. Stetter, K. O. Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10, 172-173 (1988).
5. Stetter, K. O. et al. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743-745 (1993).
6. Vorholt, J., Kunow, J., Stetter, K. O. \& Thauer, R. K. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO_{2} fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch. Microbiol. 163, 112-118 (1995).
7. Woese, C. R. \& Fox, G. E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms Proc. Natl Acad. Sci. USA 74, 5088-5090 (1977).
8. Woese, C. R., Kandler, O. \& Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576-4579 (1990).
9. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273, 1058-1073 (1996)
10. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. \& Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990).
11. Riley, M. Functions of gene products of Escherichia coli. Microbiol. Rev. 57, 862-952 (1993).
12. Cooling, F, B. III, Maloney, C. L., Nagel, E., Tabinowski, J. \& Odom, J. M. Inhibition of sulfate respiration by 1,8-dehydroxyanthraquinone and other anthraquinone derivatives. Appl. Environ. Microbiol. 62, 2999-3004 (1996).
13. Thauer, R. K. \& Kunow, J. in Sulfate Reducing Bacteria (ed. Barton, L. L.) 33-48 (Plenum, New York, 1995).
14. Speich, D. et al. Adenylylsulfate reductase from the sulfate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron-sulfur flavoproteins. Microbiology 140, 1273-1284 (1994).
15. Clark, D. P. \& Cronan, J. E. Jr in Escherichia coli and Salmonella typhimurium: Cellular and Molecular biology (ed Neidhardt, F. C.) 343-357 (ASM Press, Washington DC, 1996).
16. Möller-zirkhan, D. \& Thauer, R. K. Anaerobic lactate oxidation to $3 \mathrm{CO}_{2}$ by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Arch. Microbiol. 153, 215-218 (1990).
17. Schauder, R., Eikmanns, B., Thauer, R. K., Widdel, F. \& Fuchs, G. Acetate oxidation to CO_{2} in anaerobic-bacteria via a novel pathway not involving reactions of the citric-acid cycle. Arch. Microbiol. 145, 162-172 (1986).
18. Dai, Y.-R. et al. Acetyl-CoA decarbonylase/synthase complex from Archaeoglobus fulgidus: purification, characterization, and properties. Arch. Microbiol. (submitted).
19. Gorris, L. G. M., Voet, A. C. W. A. \& van der Drift, C. Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus. BioFactors 3, 29-35 (1991).
20. Zhang, Q., Iwasaki, T., Wakagi, T. \& Oshima, T. 2-oxoacid:ferredoxin oxidoreductase from the thermoacidophilic archaeon, Sulfolobus sp. strain 7. J. Biochem. 120, 587-599 (1996).
21. Tersteegen, A., Linder, D., Thauer, R. K. \& Hedderich, R. Structures and functions of four anabolic 2oxoacid oxidoreductases in Methanobacterium thermoautotrophicum. Eur. J. Biochem. 244, 862-868 (1997).
22. Kletzin, A. \& Adams, M. W. W. Molecular and phylogenetic characterization of pyruvate and 2ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J. Bacteriol. 178, 248-257 (1996).
23. LaPaglia, C. \& Hartzell, P. L. Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl. Environ. Microbiol. 63, 3158-3163 (1997).
24. Kunow, J., Linder, D., Stetter, K. O. \& Thauer, R. K. $\mathrm{F}_{420} \mathrm{H}_{2}$: quinone oxidoreductase from Archaeoglobus fulgidus-characterization of a membrane-bound mutlisubunit complex containing FAD and iron-sulfur clusters. Eur. J. Biochem. 223, 503-511 (1994)
25. Yeliseev, A. A., Krueger, K. E. \& Kaplan, S. A mammalian mitochondrial drug receptor functions as a bacterial "oxygen" sensor. Proc. Natl Acad. Sci. USA 94, 5101-5106 (1997).
26. Edgell, D. R., Klenk, H.-P. \& Doolittle, W. F. Gene duplications in evolution of archaeal family B DNA polymerases. J. Bacteriol. 179, 2632-2640 (1997).
27. Bergerat, A. et al. An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 386, 414-417 (1997).
28. Marsh, T. L., Reich, C. I., Whitelock, R. B. \& Olsen, G. J. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATAbinding protein of eukaryotes. Proc. Natl Acad. Sci. USA 91, 4180-4184 (1994)
29. Kosa, P. F., Ghosh, G., DeDecker, B. S. \& Sigler, P. B. The 2.1-A crystal structure of an archaeal preinitiation complex: TATA-box-binding protein/transcription factor (II)B core/TATA-box. Proc. Natl Acad. USA 94, 6042-6047 (1997).
30. Curnow, A. W. et al. Glu-tRNA ${ }^{\mathrm{Gln}}$ amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl Acad. Sci. USA 94, 11819-11826 (1997).
31. Ibba, M., Bobo, J. L., Rosa, P. A. \& Soll, D. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc. Natl Acad. Sci. USA (submitted).
32. Waldmann, T., Lupas, A., Kellermann, J., Peters, J. \& Baumeister, W. Primary structure of the thermosome from Thermoplasma acidophilum. Hoppe-Seyler's Biol. Chem. 376, 119-126 (1995).
33. Kagawa, H. K. et al. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J. Mol. Biol. 253, 712-725 (1995).
34. Noll, K. M. \& Barber, T. S. Vitamin contents of archaebacteria. J. Bacteriol. 170, 4315-4321 (1988).
35. Thornebene, T. G. \& Langworthy, T. A. Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science 203, 51-53 (1979).
36. Nishihara, M. \& Koga, Y. sn-glycerol-1-phosphate dehydrogenase in Methanobacterium thermoautotrophicum: key enzyme in biosynthesis of the enantiomeric glycerophosphate backbone of ether phospholipids of archaebacteria. J. Biochem. 117, 933-935 (1995).
37. Huber, R. et al. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376, 57-58 (1995).
38. Fleischmann, R. D. et al. Whole-genome random sequenching and assembly of Haemophilus influenzae Rd. Science 269, 496-511 (1995).
39. Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397-403 (1995).
40. Tomb, J.-F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547 (1997).
41. Sutton, G. G., White, O., Adams, M. D. \& Kerlavage, A. R. TIGR Assembler: A new tool for assembling large shotgun sequencing projects. Genome Sequence Technol. 1, 9-19 (1995).
42. Sonnhammer, E. L., Eddy, S. R. \& Durbin, R. Pfam: A comprehensive database of protein families based on seed alignments. Proteins 28, 405-420 (1997).
43. Claros, M. G. \& von Heijne, G. TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10, 685-686 (1994).

Acknowledgements. We thank M. Heaney, J. Scott and R. Shirley for software and database support; V. Sapiro, B. Vincent, J. Meehan and D. Maas for computer system support; B. Cameron and D. J. Doyle for editorial assistance: and K. O. Stetter for providing A. fulgidus VC-16. This work was supported by the US Department of Energy.

Correspondence and requests for materials should be addressed to J.C.V. (e-mail: gaf@tigr.org). The annotated genome sequence and the gene family alignments are available on the World-Wide Web at http://www.tigr.org/tdb/mdb/afdb/afdb.html. The sequence has been deposited in GenBank with accession number AE000782.

Table 2. List of A. fulgidus genes with putative identification. Gene numbers correspond to those in Fig.2. Percentages represent per cent identities.

NoA	ESIS		AF0722	cobalamin biosynthesis precorrin-6Y methylase (cbi	
General			AF0732	cobalamin biosynthesis precorrin-8W	
AFO906	hydantoin utilization protein A (hyy A)	27.4\%		decarboxylase (cbiT)	.8\%
Aromatic	amino acid family		AFO723	enthesis protein (cbiD)	
AFO228	3-dehydroquinate dehydratase (aroD)	36.8\%	AF0728	cobalamin biosynthesis protein (cbiM-1)	51.4\%
AF1497	5 -enolpyruvylshikimate 3 -phosphate synthase (aroA)	41.5\%	AF1843	cobalamin biosynthesis protein (cbiM-2)	41.2\%
AF1603	anthranilate synthase component ((trie)	43.7\%		cobaltransportATP-binding protein (cbio	
AF1604	antrranilate synthase component\| (trrD)	43.8\%	AF1841	cobaltransportATP-binding protein (cbio-2)	41.19\%
AF1602	anthranilate synthase component\| (trpG)	50.0\%	AF0729	cobaltransport protein (cbiN)	56.0\%
AF0227	chorismate mutase/prephenate dehydratase (pheA)	32.2\%	AF0730	cobaltransport protein (cbiQ-1)	2.6\%
AF0670	chorismate synthase (aroc)	55.3\%	AF1842	cobaltransport protein (cbiQ-2)	30.3\%
AF1601	phosphoribosyl anthranilate isomerase (trpF)	37.1\%	AF1338	cobyric acid synthase (cbiP)	44.5\%
AF2327	shikimate 5 -dehydrogenase (aroE)	43.1	AF2229	cobyrinic acid a,c-diamide synthase (cbiA)	42.3\%
AFO343	tryptophan repressor binding protein (wrbA)	46.6\%	AF1241	glutamate 1-semialdehyde aminotransferase (hemL)	54.3\%
AF1599	tryptophan synthase, subunitalpha (trpA)	39.5\%	AF1975	glutamyltRNA reductase (hemA)	42.7\%
AF1240	tryptophan synthase, subunit beta (trpB-1)	39.4	AF1594	heme biosynthesis protein (nirH)	25.2\%
AF1600	tryptophan synthase, subunit beta (trpB-2)	64.1\%	AF1125	heme biosynthesis protein (nir-1)	38.7\%
Aspartate	family		AF2009	heme biosynthesis protein (nir)-2)	31.8% 29.49
2112	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase (metE)	28.1\%	AFI311	oxygen-independent coproporphyrinogen III	
AF0882	asparaginase (asnA)	45.9\%		poxiast, putative	3\%
AF1439	asparagine synthetase (asnB)	5.9\%	${ }_{\text {AFP1974 }}$	porphobilinogen deaminase (hem)	- 4%
AF2366	aspartate aminotransterase (aspB-1)	42.3\%	AF1784	oporphy	
AF2129	aspartate aminotransferase (aspB-2)				
1623	aspartate aminotransterase (aspB-3)		AFF1243	uroporphy ${ }^{\text {a }}$ -	52.5\%
$\begin{aligned} & \text { AFO409 } \\ & \text { AF1417 } \end{aligned}$	aspartate aminotransferase (aspb-4)	45.2\% 46.2%	AF0116	uroporphyinogen III synthase (hemD)	27.4\%
AF0700	aspartate kinase (lysC)	49.1\%	Menaqu	one and ubiquinone	
AF1422	aspartate racemase	48.0\%	AF2178	4-hydroxybenzoate octaprenytransferase (ubiA)	41.0\%
AF1506	aspartate-semialdehyde dehydrogenase (asd)	60.9\%	AF004 4	4-hydroxybenzoate octaprenyltransferase, putative	30.6\%
AF080	diaminopimelate decarboxylas		AF2413	coenzyme PQQ synthesis pro	30.5\%
AF0747	diaminopimelate epimerase (dapF)	45.8\%	AF1191	dihydroxynaphthoic acid synthase(menB)	54.6\%
AFO909	dihydrodipicolinate reductase (dapB)	48.6\%	AF1551	octaprenyl-diphosphate synthase (ispB)	33.2\%
	dihydrodipicolinate synthase (da	51.00	AFO140)	
AF0935	homoserine dehydrogenase (hom)	47.9\%		methyltransferase (ubiE)	31.0\%
AFO886	S-adenosy S homocysteina		Molybd		
	enosylhomocysteinase hydrolase (ahč-2)		AF2006	molybdenum cofactor biosynthesis protein (moaA)	47.8\%
AFO051	succinyl-diaminopimelate desuccinylase (dapE-1) succinyldiaminopimelate desuciny	30.5% 4388	AFO265	molybdenum cofactor biosynthesis protein (moaB)	44.4\%
AF0904 AF0551	succinyl-diaminopimelate desuccinylase (dapE-2) threonine synthase (thrC-1)	${ }_{40.5}^{43}$	AF2150	molybdenum cofactor biosyntesis protein (moaC)	. 0%
AFF1316	threonine synthase (thr-2)	61.0\%			
				bbdenum cofactor biosynthesis protein (moeA-2)	
Giluamate	family		AF0161	molybdenum cofactor biosynthesis protein (moeA-3)	30.5\%
	yld	56.1\%	AF0531	molybdenum cofactor biosynthesis protein	44.0\%
AF2288	acety/glutamate kinase, putative	29.0\%	AF1022	molybdenum-pterin-binding protein (mopB)	39.3\%
AFOO80	acetylorrithine aminotransferase (arg	48.3\%	AF1624	molybdopterin converting factor, subunit 1 (mod	6\%
AF1815	lornithine a	36.2	AF2179	molybdopte	3\%
AFO522	acetylornithine deacetylase (argE)	29.4\%	AF2005	molybdopterin-guanine dinucleotide biosynthesis	
	gininosuccinate lyase (a				
A252	gininosuccinate synth	62.0\%		molybdopterin-guanine dinucleotide biosynthesis	
AF1147	glutamate N -acetyltransferase (arg))	47.8\%		protein B(mobB)	40.0\%
	glutamate synthase (gItB)		Pantoth		
$\begin{aligned} & \text { AFO949 } \\ & \text { AF2071 } \end{aligned}$	glutamine synthetase (glnA) N -acetyl-gamma-glutamyl-p	.3\%	AF1645	pantothenate metabolism flavoprotein (dfp)	42.4\%
	reductase (argC)	53.3\%	Riboflav		
AF1255	ornithine carbamoyltransferase (argF)	51.7\%	AF0484	GTP cyclohydrolase \| (ribA-1)	5\%
ruvate	family			GTP cyclohydrolasell \| (ribA	
AF0957	2-isopropylmalate synthase (leuA-1)	53.5\%	AF1416	flavin synthase (ribC)	
AF0219	2-sisopropylmalate synthase (leuA-2)	53.9\%	AFF2128 AF2007	Triboravin synthase, subunit bela((ribe)	
AF2199	3-sisopropylmalate dehydratase, large subunit (leuC	49.3\%		ribofavin-specific deaminase (ribG)	
AF0629	3-sopropylmalate dehydratase, small subunit (lee	56.4\%	Thiamin		
AF1761	3 -sopropylmalate dehydratase, small subu	5.19	F2075	hydroxyethythiazole kinase (thiM)	33.6\%
AF0628	3 -sopropylmalate dehydrogenase (leu)	59.2\%	AF2208	hydroxymethylpyrimidine phosphate kinase (th	5.5\%
AF1720	acetolactate synthase, large subunit (live-1)	57.5\%	AF1695	thiamine biosynthesis protein (apbA)	36.9\%
AF1780	acetolactate synthase, large subunit (live-2)	32.1\%	AF2412	thiamine biosynthesis protein (thic)	60.2\%
AF2015	acetolactate synthase, large subunit (livB-3)	34.1\%	AF0553	thiamine biosynthesis protein (thiF)	38.1\%
AF2100	acetolactate synthase, large subunit (ivB-4)	38.4\%	AFOO88	thiamine biosynthesis protein, putative	28.2\%
AF1719	acetolactate synthase, small subunit (livN)	60.4\%	AF0702	thiamine biosynthetic enzyme (thit)	50.0\%
1672	acetolactate synthase, small subunit, pu	29.7\%	AF0733	thiamine monophosphate kinase (thi)	
AFо933	branched-chain amino acid aminotransferase (ivE)	59.0\%	AF2074	thiamine phosphate pyrophosphorylase (thiE)	45.5\%
AF1014 AF1985	dihydroxy-acid dehydratase (1)	8\%			
	keto-acid reductoisomerase (ivC)	.8\%		NH(3)-dependent NAD+ synthetase (nad	0\%
Serinetam			AF1839	nicotinate-nucleotide pyrophosphorylase (nadC)	43.2\%
AFO813	phosphoglycerate dehydrogenase (serA)	48.8	AF1837	quinolinate synthetase (nadA), authentic frameshift	53.9\%
${ }_{\text {AF2138 }}^{\text {AFO273 }}$	phosphoserine phosphatase (serB)	.7\%	CELLEN	ELope	
		${ }^{31.196}$			
0274	rcosin	5\%	Memb	les, lipoproteins, and	
AF0852	serine hydroxymethyltransferase (glyA)	56.1\%	420	membrane proteín	51.8\%
Histidine	family			membrane protein, putativ	22.8\%
AFO590	ATP phosphoribosyltransferase (hisG)	31.0\%		olysaccharides, lipopolysaccharides and	
AFO212	histidinol dehydrogenase (hisD)	51.0\%	AF0324	dTDP-glucose 4,6-dehydratase (fibB)	50.0\%
AF2002	histidino-phosphate aminotransferase (hisC-1)	39.8\%	AFOO43	first mannosy Itransferase (wbaz-1)	30.0\%
AF2024	histidino-phosphate aminotransferase (hisc-2)	36.8\%	AF0606	first mannosyl transferase (wbaz	29.0\%
AF0985	imidazoleglycerol-phosphate		AF1728	galactosyltransferase	26.9\%
	dehydrogenase/histidino-phosphatase (hisB)	42.2\%	AF0044	GDP-D-mannose dehydratase (gmd-1),	
819	imidazoleglycerol-phosphate synthase,	6709			40.7\%
AF2265	imidazoleglycerol-phosphate synthas		AFO242	glucose-1-phosphate thymidylytranserase (graD-1)	27.7\%
	subunit ((hisH)	44.4\%	AF0325	glucose-1-phosphate thymidylyltransferase (graD-2)	45.2\%
AF0509	imidazoleglycerol-phosphate synthase,		AF0321	glycosy Itransferase	30.7\%
	subunith,	43.2\%	AFO387	gly cosyltransferase, putative	33.8\%
	phosphoribosyl-AMP cyclohydrolase/			immunogenic protein (bcsp3 1-1)	34.7\%
	hohydrolase (h	99.6\%	AF0635	immunogenic protein (bcsp31-2)	44.3\%
AF0713	phosphoribosylformimino-5-aminoimidazole		AFO988	immunogenic protein (bcsp31-3)	28.3\%
	carboxamide ribotide isomerase (hisA-1)	37.5\%	AF0602	LPS biosynthesis protein, putative	29.6\%
				LPS biosynthesis protein, putative	29.0\%
	carboxamide ribotide isomerase (hisA-2)	42.2\%	$\begin{aligned} & \text { AF0607 } \\ & \text { AF } \end{aligned}$	LPS glycosyltransferase, putative	29.7\%
BIOSYNTH	ESIS OFCOFACTORS, PROSTHETIC GROUPS, AND	CARRIERS		(rfbM), authentic frameshift	42.4\%
			AF1097	mannose 6 -phosphate isomerase/mannose	
AF1855	2,3-dihydroxybenzoate-AMP ligase (entE)	27.2\%		phosphate guanylyl transferase (manC) mannosephosphate isomerase, putative	43.19\% 31.3%
AF1070	coenzyme F390 synthetase (tsA-1)	30.3\%	AF0045	mannosyltransferase A (mtfA)	38.7\%
AF1671 AF2013	coenzyme F390 synthetase (fts	31.9% 30.49%	AFO311	0 -antigen biosynthesis protein (ffCC), authentic	
	coenzyme F390 synthetase isochorismatase (entB)	30.4% 312%		frameshitt	30.6\%
			AF0458	phosphomannomutase(pmm)	39.5\%
Folic acid	dihydropteroate synthase	40.8\%	AFO595 AF0322	polysaccharide biosynthesis thamnosyl transferase ((tbQ)	${ }_{\text {27.5\% }}^{24.19 \%}$
			AF0323	spore coat polysaccharide biosyn	
AF1648	bacteric			(spsK-2), authentic frameshitt	36.3\%
AF0464	bacteriochlorophyll synthase, 43 k Da subunit (chlP-1)	29.7\%	AFO620	succinoglycan biosynthesis protein (exoM)	24.8\%
AF1023	bacteriochlorophyll synthase, 43 kDa subunit (ch\|P-2)	312\%		UDP-glucose 4-epimerase (gal	. 0 \%
AF1637	bacteriochlorophyll synthase, $43 \mathrm{kDa} \mathrm{subunit} \mathrm{(} \mathrm{(ch\mid} 1$-3)	27.0\%	AF0302	UDP-glucose dehydrogenase (ugd-1)	43.8\%
${ }_{\text {AFOO37 }}$	cobalamin (5 -phosphate) synthase (cobs-1)	33.9\%	AF0596	UDP-glucose dehydrogenase (ugd-2)	44.1\%
AF2323	cobalamin (5^{-}-phosphate) synthase (cobS-2)	34.4\%			
AF0725	cobalamin biosynthesis precorrin methylase (cbiG)	7\%			
	cobalamin biosynthesis precorrin-2 methyltransferase (cbiL)	31.5\%	AF1054	flagelin (flabi-1)	30.0\%
AF0726	alamin biosynthesis precorrin-3 methylase (cbiF)	49.2\%	AFF1055	flagelin (lab1-2)	${ }^{31.19 \%}$
AF0724	cobalamin biosynthesis precorrin-3 methylase (cbil)	49.0\%	AFF1413	$\text { surface layer protein } \mathrm{B}(\text { slg } \mathrm{B}-2)$	30.8\% 20.9\%

CELLULAR PROCESSES		
General		
AF1040	chemotaxis histidine kinase (cheA)	41.9\%
AF1035	chemotaxis histidine kinase, putative	25.3\%
AF1036	chemotaxis histidine kinase, putative	30.4\%
AF1037	chemotaxis protein methytransferase (cheR)	
AF1042	chemotaxis response regulator(cheY)	62.9\%
AF1034	methyl-accepting chemotaxis protein (tlp-1)	27.5\%
AF1045	methyl-accepting chemotaxis protein (tpoc-2)	29.6\%
AF1041	protein-glutamate methylesterase (cheB)	43.3\%
AF1032	purine NTPase, putative	32.2\%
AF1044	purine-binding chemotaxis protein (cheW)	40.4\%
Celld division		
	cell division control protein 21 (cdc21)	32.8\%
AF1297	cell division control protein 48, AAA family (ddc48-1)	69.19\%
AF2098	cell division control protein 48, AAA family (dcc48-2)	62.0\%
AF0244	cell division control protein 6 , putative	27.5\%
AF1285	cell division control protein, AAA family, putative	49.36\%
AF0696	cell division inhibitor (minD-11)	55.0\%
AF1937	cell division inhibitor (minD-2)	32.8\%
AF2051	cell division protein (tss)	40.8\%
AF0535	cell division protein (tisz-1)	60.4\%
AF0570	cell division protein (ftsz-2)	61.4\%
AF0837	cell division protein pelota (pe	41.7\%
AF1215	cell division protein, putative	32.8\%
AFO238	centromere/microtubule-binding protein (cl	58.8\%
AF1558	chromosome segregation protein (smc1)	32.8\%
AF1822	serine/threoonine phosphatase (ppa)	31.9\%
Chaperones		
	small heat shock protein (hsp20-1)	52.3\%
AF1971	small heat shock protein (hsp20-2)	38.1\%
AF2238	thermosome, subunit alpha (thsA)	70.6\%
AF1451	thermosome, subunit beta (thsB)	68.2\%
Chromosome-associated protein		
AF1493	archaeal histone A1 (hpyAl-2)	69.7\%
Detoxification		
AF2173	2-nitropropane dioxygenase (ncd2)	39.7\%
AF0270	alky hydroperoxide reductase	73.5\%
AF1361	arsenate reductase (arsC)	30.5\%
AF0550	N-ethylammeline chlorohydrolase (trzA-1)	45.9\%
AF0997	N-ethylammeline chlorohydrolase (tra-2)	44.5\%
AF0254	NADH oxidase (noxA-1)	35.1\%
AF0395	NADH oxidase (noxA-2)	35.5\%
AF0400	NADH oxidase (noxA-3)	40.8\%
AF0951	NADH oxidase (noxA-4)	36.7\%
AF1858	NADH oxidase (noxA-5)	34.0\%
AF0455	NADH oxidase (noxB-1)	43.3\%
AF1262	NADH oxidase (noxB-2)	42.9\%
AFO226	NADH oxidase (noxC)	38.4\%
AF0515	NADH oxidase, putative	25.5\%
AF2233	peroxidase / catalase (perA)	62.9\%
Protein and peptide secretion		
	protein translocase, subunit SEC61 alpha (sec	
AF0536	protein translocase, subunit SEC61 gamma (secE)	25.0\%
AF2062	signa recognition particle receptor (dpa)	54.8\%
AF1258	signal recognition particle, subunit SRP19 (srp19)	36.6\%
AF0622	signal recognition particle, subunit SRP54 (srp54)	512%
AF1791	signal sequence peptidase (sect1)	36.3\%
AF1657	signal sequence peptidase (spo21)	47.0\%
AF1655	signa sequence peptidase, putative	34.5\%
AFF338	type I I secretion system protein (gspE-1)	38.5\%
	type II secretion system protein (gspE-2)	38.2\%
AF0996	type II secretion system protein ((sspE-3)	4.
AF1049	type II secretion system protein (gspE-4)	46.5\%
CENTRALINTERMEDARYMETABOLISM		
Degradation of polysaccharides		
AF1207	2-deooxy-D-gluconate 3-dehydrogenase (kdui)	45.3\%
AF1795	endoglucanase (celM)	55.4\%
Phosphorus compounds		
	exopolyphosphatase (ppx1)	55.1\%
Polyamine biosynthesis		
AF2334	spermidine synthase (speE)	37.1\%
Polysaccharides -(cytoplasmic)		
	dolichol phosphate mannose synthase, putative	
Sulfur metabolism		
AFO288	adenylylsulfate 3-phosphotransferase (cysC)	52.0\%
AF1670	adenylylsulfate reductase, subunit A (apra)	96.0\%
AF1669	adenyly sulfate reductase, subunit B (aprB)	97.3\%
AF1667	sulfate adenylytransferase (sat)	4\%
AF2228	sulfite reductase, desulfoviridin-type subunit gamma (dsvC)	
AF0423	sulfite reductase, subunit alpha (dsrA)	100.0\%
AF0424	sulfite eductase, subunit beta (dsrB)	100.0\%
AF0425	sulfite reductase, subunitgamma (dsrD)	97.4\%
Other		
AF1706	2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase (pcbD)	
AF0675 AF0091	2 -hydroxy-6-0xohepta-2,4-dienoate hydrolase (todF)	26.3\%
	2-hydroxyhepta-2,4-diene-1,7-dioate isomerase (hpcE-1)	44.5\%
AF2225	2-hydroxyhepta-2,4-diene-1,--dioate isomerase	
	(hpcE-2)	66.0\%
AFоз33	4-hydroxyphenylacetate 3 -hydroxylase (hpaA-1)	22.4\%
AFO885AF1027	4-hydroxyphenylacetate 3 -hydroxylase (hpaA-2)	26.0\%
	4-hydroxyphenylacetate-3-hydroxylase (hpaA-3)	21.0\%
AFF1027 AFO669	4-0xalocrotonate tautomerase, putative	31.9\%
AF0669 AF0808	glycolate oxidase subunit (glcD)	32.0\%
	methylmalonyl-CoA decarboxylase, biotin carboxyl carrier subunit (mmdC)	36.2\%
AF2217	methylmalony-CoA decarboxylase, subunit alpha	
	(mmdA)	62.5\%
AF1288	methylmalonyl-CoA mutase, subunit alpha (mutB), authentic frameshift	
AF2219	authentic frameshift methylmalonyl-CoA mutase, subunit alpha,	46.1\%
	C-terminus (mcmA2)	48.7\%
AF2215	methylmalony-CoA mutase, subunit alpha,	
	N -erminus (memA1)	512%
AF2099	muconate cycloisomerase \|l (clcB)	24.9\%
AF1425	phosphonopyruvate decarboxylase (bcpC-1)	35.0\%
AF1751	phosphonopyruvate decarboxylase (bcp-2)	48.6\%
Energy metabolism		
Amino acids and amines AF1958 2-hydroxyglutaryl-CoA dehydratase, subunit alpha (hgdA)		
		30.5

acetylpolyamine aminohydrolase (aphA)
acetylpolyamine aminohydrolase, puta)
glutaryl-CoA dehydrogenase (gcdH)
group II decarboxylase
group || decarboxylase
ornithine cyclodeaminase (arcB)
4-hydroxybutyrate COA transferase (cat2-1)
4-hydroxybutyrate CoA transferase (cat2-2)
glycerol kinase (glpk)
glycerol-3-phosphate dehydrogenase (gl|AA)
glycerol-3-phosphate dehydrogenase (NAD(P)+)
gpsA)
AF0020
ATP-pro
AF1166
AF1167
AF1168
AF1165
AF1159
AF1162
Electron transport
AF2036 cytochrome C oxidase folding protein (coxD)
AFO144
AF1057 cytochrome C-type biogenesis protein (ccdA)
AF2192 cytochrome C-type biogenesis protein (nrfE)
F2296 cytochrome oxidase, subunit I (cydA-1)
AF0833
AF0286
AF1371
AF1378
AF1381
AF1824
AF1823
AF1832
AF1833
AF1998
AF0688
AF1185
AF1263
AF2380
AF2381
AF2409
AF0076
AF1461
AF1436
AF1436
AF1896
AF1372
AF1374

AF0499	molybdopterin oxidoreductase, iron-sulfur binding subunit	
AFO500	molybdopterin oxidoreductase, membrane subunit	
	molybdopterin oxidoreductase, iron-sulfur binding subunit	35.5\%
AF1203	molybdopterin oxidoreductase, molybdopterin	
384	molybdopterin oxidoreductase, molybdopterin bi subunit	
AF2385	molybdopterin oxidoreductase, iron-sulfur binding	
$\begin{aligned} & \text { AF2386 } \\ & \text { AF0159 } \end{aligned}$	molybdopterin oxidoreductase, membrane su	30.3\%
	molybdopterin oxidoreductase, molybdopterin binding subunit, putative	\%
AF2267	NAD(P) 1 -flavin oxidoreductase	\%
AF0131	NAD(P)H-flavin oxidoreductase, putative	28.2\%
2352	NADH dehydrogenase, subunit 1 , putative	28.9\%
1828	NADH dehydrogenase, subunit3	24.3\%
0248	NADH-dependentilavin oxidoreduc	
	nigerythrin, putative	
F0546	nitrate reductase, gamma subunit(nar)	30.1\%
O501	nitrate reductase, gamma subunit, putative	29.3\%
1126	P450 cytochrome, putative	5%
4463	polyterredoxin (mvhB), authentic frameshitt	32.24
AF1379	quinone-reactive Ni/Fe-hydrogenase B-type	
	cytochrome subun	\%
	red	
${ }^{0547}$	reductase, iron-sulfur binding subunit	28.3\%
AF0867	reductase, putative	33.3\%
0880	rubredoxin (rd-1)	69.2\%
AF1349	rubredoxin (rd-2)	\%
AF0832	rubrerthrin (rit)	45.7\%
AF0831	rubreythrin ([r2)	63.7\%
1640	rubrerthrin (r3)	378\%
2312	rubrenthrin (r4)	
0711	thioredoxin (trx-1)	28.4\%
AF0769	thioredoxin (ttr-2)	38.5\%
1284	thioredoxin (tix-3)	52.9\%
AF2144	thioredoxin (trx-4)	9\%
AF1339	ubiquinol-cytochrome C reductase comple subunit VI requiring protein	
Fermentation		
AF 1779	2-hydroxyacid dehydrogenase, putatio	
AF0469	2-ketoglutarate ferredoxin oxidoreductas subunit alpha (korA)	
AF0468	2 -ketoglutarate ferredor	
	subunit beta (korB)	
AF0470	2-ketoglutarate ferredoxin oxidoreductase, subunit delta (korD)	
AF0471	2-ketoglutarate ferredoxin	
	subunitga	40.0\%
AF2053	2-ketoisovalerate ferredoxin oxidoreductase, subunit alpha (vorA)	
AF2052	2-ketoisovalerate ferredoxin oxidoreductase,	
AF2054	Subunit beta (vorg)	
	subunitdelta (vorD)	51.5\%
AF2055	2-ketoisovalerate ferredoxin oxidoreduc	
		45.2\%
AF0749	2-oxoacid ferredoxin oxidore subunit alpha (orA)	33.7\%
AF0750	2 -xooacid ferredoxin oxidored	
	subunit beta (orB)	
AF1286 AF0197	acetoin utilization protein, putativ	35.1\%
	acety-CoA synthetase (acs-1)	27.19
AF0366AFO677	acety-CoA synthetase (acs-2)	473\%
	acety-COA synthetase (ass-3)	40.99
AF0975AF0976	acety-CoA synthetase (acs-4)	42.3\%
	acety-COA synthetase (acs-5)	36.2\%
AF1287AFOO24	acety-CoA synthetase (acs-6)	34.3\%
	alcohol dehydrogenase, iron-containin	36.2\%
AFO2019	alcohol dehydrogenase, iron-containin	37.4\%
	alcohol dehydrogenase, iron-contain	35.7\%\%
AF2389-C	acetyl-CoA synthetase, putative	64.8\%
	V actyl-CoA synthetase, putative	\%
$\begin{aligned} & \text { AF2389-1 } \\ & \text { AF2101 } \end{aligned}$	alcohol dehydrogenase, zinc-dependen	34.8\%
	aldehyde ferredoxin oxidoreductase (aor	\%
$\stackrel{\text { AFOO23 }}{\text { AFOO77 }}$	aldehyde ferredoxin oxidoreductase (aor-2)	32.6\%
AF2281	aldehyde ferredoxin oxidoreductase (aor-3)	38.4\%
	aldehyde ferredoxin oxidoreductase (aor-4)	53.0\%
AFOOO6AFOOO11	corrinoid methyltransferase protein (maC-1)	30.7\%
	corrinoid methyltransferase protein (maC-2)	29.5\%
${ }_{\text {AFPOS34 }}^{\text {AFO50 }}$	D-lactate dehydrogenase, cytochrome-type (did)	,
	formate dehydrogenase (fdhD D $^{\text {) , authentic frameshitt }}$	
$\begin{aligned} & \text { AF1199 } \\ & \text { AF1198 } \end{aligned}$	glutaconate COAA-transferase, subunit A (gctA)	9\%
	glutaconate CoA-transferase, subunit B (gctB), authentic frameshift	0\%
AF1489	indolepyruvate ferredoxin oxidoreductase,	
	subunitalpha (iorA)	4.1\%
AF2030	indolepyruvate ferre subunit beta (iorB)	
AF0807 AF0855 AF2085	L-actate dehydrogenase, cytochrome-ype (IId	39.4\%
	L-malate dehydrogenase, NAD+-dependent (mdhA)	1\%
	oxaloacetate decarboxylase, biotin carboxyl carrier subunit, putative	38.7\%
AF2084	oxaloacetate decarboxylase, sodium ion p	
	(oadB)	8\%
$\begin{aligned} & \text { AF1252 } \\ & \text { AF1701 } \end{aligned}$	oxaloacetate decarboxylase, subunit alpha (oadA)	3\%
	pyruvate ferredoxin oxi subunit alpha (porA)	
AF1702	pyruvate ferredoxin oxidoreductas	
	subunit beta (porB)	50.7\%
AF1700	pyruvate ferredoxin oxidoreductase, subunit delta (porD)	
AF1699	(porb	
	(porG)	50.8\%
Giuconeogenesis		
	phosphoenolpy	61.4\%
Glycolysis		
AF146	3-phosphoglycerate kinase (pgk)	48.8
AF 1132	enolase (eno)	53.9\%
AF1732	glyceraldehyde 3-phosphate dehydrogenase (9a)	56.6\%
AF 1304	triosephosphate isomerase (tpiA)	56.4\%
tos	phosphate	
AF0943	ribose 5-ph	48.9
AFO356	carbohydrate kinase, pfkB family	31.3
0401	carbohydrate kinase, pikB Tamily	34.9\%
AF 1324	carbohydrate kinase, FGGY family	27.19
-1752	carbohydrate kinase, FGGY family	29.3\%
0861	D-arabino 3-hexulose 6-phosphate formaldehyde lyase (hps-1)	30.6\%
AF1305	D-arabino 3-hexulose 6-phosphate formaldehyde lyase (hps-2)	
AF0480	fuculose-1-phosphate aldolase (fucA)	31.8

AF1963	aconitase (acn)	57.1
AF1340	citrate synthase (citz)	50.
AF1098	fumarase (tum-1)	
99	fuma	
AF0647	isocitrate dehydrogenase, NADP (icd)	
AF1727	malate oxidoreductase (mae)	2.3\%
AF0681	succinate dehydrogenase, flavoprotein subunit A (sdhA)	
AF0682	succinate dehydrogenase, iron-sulfur subunit B/sd	
AF0683	sucinate dehydrogenase, subunit C (sdhC)	36.6\%
AF0684	succinate dehydrogenase, subunit D (sdhD)	
AF1539	succiny-CoA synthetase, alpha subunit (sucD-1)	5.95\%
AF2185	succiny-COA synthetase, alpha subunit (sucD-2)	63.5\%
AF1540	succiny-CoA synthetase, beta subunit (sucC-1)	51.3\%
AF2186	succiny-CoA synthetase, beta subunit (sucC-2)	6\%
FATTY ACID AND PHOSPHOLIPID METABOLISM		
General		
	3-hydroxy-3-methylglutaryl-coenzyme A reductase (mvaA)	
AF0017	3-hydroxyacyl-CoA dehydrogenase (hbd-1)	4.1.1\%
AF0285	3-hydroxyacyl-CoA dehydrogenase (hbd-2)	55.8\%
AFF434	3 -hydroxyacy-CoA dehydrogenase (hid	
AF1025	3 -hydroxyacyl-CoA dehydrogenase (hbd-4)	
AF1122	3-hydroxyacyl-CoA dehydrogenase (hbd-5)	45.2\%
AF1177	3 -hydroxyacyl-CoA dehydrogenase (hbd-6)	35.8\%
AF1190	3 -hydroxyacyl-CoA dehydrogenase (hbd-7)	5\%
AF1206	3 -hydroxyacy-CoA dehydrogenase (hbd-8)	36.3\%
AF2017	3 -hydroxyacyl-CoA dehydrogenase (hbd-9)	35.4\%
AF2273	3 -hydroxyacy-CoA dehydrogenase (hbd-10)	39.4\%
AF0018	3 -ketoacy-CoA thiolase (acaB-1)	41.0\%
AFOO34	3 -ketoacy ${ }^{\text {-COA thiolase (acaB-2) }}$	
AF0133	3-ketoacy-CoA thiolase (acaB-3)	32.3\%
AFO134	3-ketoacy-CoA thiolase (acaB-4)	32.5\%
AFO201	3 -ketoacy-CoA thiolase (acaB-5)	26.9\%
AFo202	3 -ketoacy - CoA thiolase (acai-6)	3.5\%
AF0283	3 -ketoacy-CoA thiolase (acab-7)	42.0\%
AF0438	3 -ketoacy -CoA thiolase (acaB-8)	4\%
AF0967	3-ketoacy-CoA thiolase (acaB-9)	79,
AF0968	3-ketoacy-CoA thiolase (acaB-10)	8.0\%
AF1291	3-ketoacy-CoA thiolase (acas-11)	0.1\%
AF2416	3-ketoacy-CoA thiolase (acaB-12)	.9\%
AF1028	3 -ketoacyl-CoA thiolase (fad-1)	38.8\%
AF1197	3 -ketoacy C -CoA thiolase (fad-2)	47.2\%
AF2243	3-ketoacyl-CoA thiolase (fadA-3)	3\%
AFOO33	acyl carrier protein synthase (acaA	28.6\%
AF2415	acyl carrier protein synthase (acaA	58.7\%
AF0199	acy-COA dehydrogenase (acd-1)	5.9\%
AF0436	acy-CoA dehydrogenase (acd-2)	1\%
AF0498	acyl-ooAdehydrogenase (acd-3)	22.9\%
AF0671	acy-CoA dehydrogenase (acd-4)	37.9\%
AF0845	acy-CoA dehydrogenase (acd-5)	44.6\%
AFO964	acy-CoA dehydrogenase (acd-6)	35.8\%
AF1026	acyl-CoA dehydrogenase (acd-7)	6\%
AF1141	acy-CoA dehydrogenase (acd-8)	43.2\%
AF1293	acy-COA dehydrogenase (acd-9)	45.8\%
AF2057	acy-CoA dehydrogenase (acd-10)	44.6\%
AF2244	acy-CoA dehydrogenase (acd-11)	6\%
AF2275	acy-CoA dehydrogenase (acd-12)	38.9\%
AF1175	acyl-CoA dehydrogenase, short chain-speeific (acdS)	
AF0818	acylphosphatase (acyP)	6.8\%
AF0868	alkyldihydroxyacetonephosphate synthase	3.6\%
AF2286	bifunctional short chain isoprenyl diphosphate synthase (idsA)	
AFO220	biotin carboxylase (acc)	59.1\%
AF0865	carboxylesterase (est-1)	27.1\%
AF1537	carboxylesterase (est-2)	29.0\%
AF2336	carboxylesterase (est-3)	30.4\%
AF1716	carboxylesterase (estA)	40.4\%
AF174	CDP-diacylglycerol-glycerol-3-phosphate 3phosphatidytransferase (pgsA-2)	
AF1143	CDP-diacyldycerol-glycerol-3-phosphate-3-	
AF2044	CDP-diacylglycerol-serin (pssA)	36.6\%
	enoy-CoA hydratase (fad-1)	6\%
AF0685	enoy-CoA hydratase (fad-2)	39.9\%
AFO963	enoy-CoA hydratase (fadz)	48.6\%
AF1641	enoy-CoA hydratase (fad-4)	41.7\%
AF2429	enoy-CoA hydratase (fad-5)	34.79\%
AF1763	lipase, putative	33.5\%
AFOO89	long-chain-tatt-acid-CoA ligase (fadD-1)	319\%
AFO200	long-chain-fatt-acid-COA ligase (fadD-2)	34.8\%
AF0687	long-chain-atty-acid-CoA ligase (fadD-3)	311.\%
AF0840	long-chain-fatty-acid-CoAligase (fadD-4)	38.1\%
AF1029	long-chain-tatt-acid-COA ligase (fadD-5)	378\%
AF1510	long-chain-tatty-acid-CoAligase (fadD-6)	36.0\%
AF1772	long-chain-tatty-acid-CoA ligase (fadD-7)	38.7\%
AF1932	long-chain-atty-acid-CoA ligase (fadD-8)	31.0\%
AF2368	long-chain-tatt-acid-CoA ligase (fadD-9)	38.7\%
AF1753	Iysophospholipase	33.5\%
AF0196	medium-chain acy-CoA ligase (alkk-1)	34.6\%
AFO262	medium-chain acy-CoA ligase (alkk-2)	38.6\%
AF0672	medium-chain acy-CoA ligase (alkk-3)	31.0\%
AF1261	medium-chain acy-CoA ligase (alkk-4)	42.7\%
AF2033	medium-chain acy-CoA ligase (alkk-5)	33.5\%
AF2289	mevalonate kinase (mvk)	40.6\%
AFF1794	my-inositol--phosphate synthase (ino1)	32.2\%
2045	phosphat	42.5\%
AF1674	sn-glycerol-1-phosphate dehydrogenase (glda)	44.0\%
AUTOTROPHIC METABOLISM		
Geeral		
AF1100	acetyl-CoA decarbonylase/synthase, subunit alpha (cdhA-1)	50.4\%
2397	acetyl-CoA decarbonylase/synthase, subunit alpha (cdhA-2)	
AF0379	acetyl-CoA decarbonylase/synthase, subunit beta	
	(canc	62.79
		57.4\%
AF101	acetyl-CoA decarbonylase/synthase, subunit epsilo (cdhB-1)	
AF2398	acety-CoAdecarbonylase/synthase, subunit eps	
	(cdhb-2)	3.9
AF0376	acetyl-CoA decarbonylase/synthase, subunit gamma (cdhE)	
AF1849		
		39.9
AFO950	carbon monoxide dehydrogenase, iron sulfur subunit	
	(cooF)	
		38.6\%
AF2073	formylmethanofuran:tetrahydromethanopterin	
AF2207	formyltransferase (ttr-1) formylmethanofuran:tetrahydromethanopterin formyltransferase (ttr-2)	

AF1935	N5,N10-methenyltetrahydromethanopterin		AF0004	RNase Linhibitor	54.5\%
	cyclohydrolase (mch)	97.3\%	AFOO21	signal-transducing histidine kinase	26.1\%
AF0714	N5,N10-methyleneterahydromethanopterin		AF0208	signal-transducing histidine kinase	27.9\%
	dehydrogenase(mid)	61.8\%	Af0450	signal-transducing histdidine kinase	32.4\%
AF1066	$\mathrm{N} 5, \mathrm{~N} 10$-methylenetetrahydromethanopterin reductase		Af0770	signal-transducing histidine kinase	26.9\%
		59.1\%	AF0893	signal-transducing histidine kinase	28.7\%
AF1196	$\mathrm{N}, \mathrm{N} 10$-methylenetetrahydromethanopterin reducta		AF1184	signal-transducing histdidie kinase	29.8\%
	(mer-2)	37.4\%	AF1452	signal-transducing histidine kinase	28.5\%
AF0009	N5-methylterahydromethanopterin:coenzyme M		AF1467	signal-transducing histidine kinase	37.4\%
	methytransferase (mtr)	42.1\%	AF1472	signal-transducing histidine kinase	30.4\%
AF1587	ribulose bisphosphate carboxylase, large subunit		AF1483	signal-transducing histidine kinase	27.7\%
	(rbcl-1)	40.6\%	AF1515	signal-transducing histidine kinase	32.0\%
AF1638	ribulose bisphosphate carboxylase, large subunit		AF1639	signal-transducing histidine kinase	29.9\%
	(rbcl-2)	44.9\%	AFF721	signal-transducing histidine kinase	34.5\%
AF1930	tungsten formylmethanofuran dehydrogenase,		AF2109	signal-transducing histidine kinase	31.9\%
	subunit A (fwdA)	48.9\%	AF0881	signal-transducing histidine kinase,	
AF1650	tungsten formylmethanofuran dehydrogenase, subunit B (fwodB-1)	37.0\%	AF027	authentic frameshift signal-transducing histidine kinase, putative	${ }^{26.5 \%}$ 29.8\%
AF1929	tungsten formylmethanofuran dehydrogenase,		AFO410	signal-transducing histidine kinase, putative	27.1\%
	subunit ((fwdB-2)	49.4\%	AF0448	signal-transducing histidine kinase, putative	26.1\%
AF1931	tungsten formylmethanoturan dehydrogenase,		AF1620	signal-transducing histidine kinase, putative	26.2\%
	subunit ((twdC)	44.1\%	AF2032	signal-transducing histidine kinase, putative	22.5\%
AF1651	tungsten formylmethanofuran dehydrogenase,		AF2420	signal-transducing h histidine kinase, putative	28.4\%
	subunit D (fwdD-1)	32.6\%	AF0442	succinoglyan biosynthesis regulato (exsB)	37.2\%
AF1928	tungsten formy methanofuran dehydrogenase,		AF1516	sugar fermentation stimulation protein (stsA)	31.0\%
	subunit D (fwdD-2)	52.6\%	AF1270	transcriptional regulatory protein, ArsRfamily	35.4\%
AF017	tungsten formylmethanofuran dehydrogenase,		AF1544	transcriptional regulatory protein, ArsR family	32.39\%
	subunit E (twde)	29.7\%	AF1853	transcriptional regulatory protein, ArsR family	34.9\%
AF1644	tungsten formy ${ }^{\text {methanofuran dehydrogenase, }}$		AF2136	transcriptional regulatory protein, Arss family	39.8\%
	subunit F (twdF)	38.2\%	AF0439	transcriptional regulatory protein, AsnC family	29.8\%
AF1649	tungsten formylmethanofuran dehydrogenase		AF0474	transcriptional regulatory protein, AsnC family	51.0\%
	subunit G (fwdG)	45.6\%	AF0584	transcriptional regulatory protein, AsnC fam	35.3\%
PURINES,	PYRIMIIINES, NUCLEOSIDES,		AFF121	transcriptional regulatory protein, Asnc family	35.8\%
2'-Deox	ribonucleotide metabolis		${ }_{\text {AFF }}$ AFP4	transcriptional regulatory protein, Assc Camily transcriptional regulatory protein, Asnc family	1\%
AF1108	deoxycytidine triphosphate deaminase, putative	38.1\%	AF1448	transcriptional regulatory protein, AsnC family	30.6\%
AF1664	ribonucleotide reductase (nrd)	59.7\%	AF1723	transcriptional regulatory protein, AsnC family	46.4\%
AF1554	thioredoxin reductase (trxB)	45.2\%	AF1743	transcriptional regulatory protein, AsnC family	34.9\%
AF2047	thymidylate synthase, putative	33.1\%	AF2127	transcriptional regulatory protein, LysRfamily	30.8\%
Nucleotit	de and nucleoside interconversions		AFO114	transcriptional regulatory pro	35.6\%
AF0876	5 -'rucleotidase (nt5)	30.9\%	${ }_{\text {AFF }}^{\text {AFO }}$ A 112	transcriptional regulatory protein, Rok family	(
AF0676	adenylat kinase (adk)	5.19\%	AF1676	transcriptional Ieguiatory protein, Siriz tamly	40.6\%
AFF1900 AF0767	cytidylate kinase (cmk) nucleoside diphosphate kinase (ndk)	48.6\% 56.4%	${ }_{\text {AFFi817 }}$	transcriptionarieguiatory roiein,	. 5%
	nucleoside diphosphate kinase (ndk) thymidylate kinase (tmk)	- ${ }_{\text {56.4.9\% }}$	AF0363	transcriptional repressor (cinR)	27.5
AF1308	thymidylate kinase, putative	26.3\%	REPLICAT		
AF2042	Uridylate kinase (pyrH)	53.6\%	DNA	cation	
Purine rio	onucleotide biosynthesis		AF2117	3-methyladenine DNA glycosylase (alkA)	30.0\%
	adenylosuccinate lyase (purB)	52.3\%	AF2060	activator 1, replication factor C, 35 KDa subunit	66.3\%
AF0841	adenylosucinate synthetase (purA)	70.8\%	AF1 195	activator 1, replication factor C, 53 KDa subunit	43.7\%
AF0873	amidophosphoribosyltransferase (purF)	55.8\%	AF0465	DNA gyrase, subunit A (gyrA)	48.4\%
AF0253	GMP synthase (guaA-1)	59.8\%	AF0530	DNA gyrase, subunit B (gyrB)	58.4\%
AF1320	GMP synthase (guaA-2)	49.4\%	AF1388	DNA helicase, putative	46.8\%
AF1811	inosine monophosphate cyclohydrolase	38.3\%	AF 1960	DNA helicase, putative	32.7\%
AF0447	inosine monophosphate dehydrogenase (guaB-1)	41.0\%	AF0623	DNA Iigase (ig)	44.4\%
AF2118	inosine monophosphate dehydrogenase (guaB-2)	319\%	AF1725	DNA ligase, putative	32.7\%
AF1259	inosine monophosphate dehydrogenase, putative	51.0\%	AF0497	DNA polymerase B1 (polB)	45.1\%
AF1157	phosphoribosylamine-glycine ligase (purD)	40.9\%	AF0693	DNA polymerase $\mathrm{B2}$ (boxA), authentic framesh hitt	32.3\%
AF1271	phosphoribosylaminoimidazole carboxylase (purE)	42.8\%	AF0972	DNA polymerase ll, subunitepsilon (dnaQ)	31.9\%
AF1272	phosphoribosylaminoimidazolesuccinocarboxamide		AF2277	DNA polymerase, bacteriophage type	36.9\%
	synthase (purc)	34.7\%	AFO742	DNA primase, putative	26.8\%
AF1693	phosphoribosylformylglycinamidine cyclo-ligase		AFO264	DNA repair protein $\mathrm{AAD2}$ (rad2)	44.4\%
	(purM)	5.8\%	AFO358	DNA repair protein RAD25	32.5\%
AF1260	phosphoribosylformylglycinamidine synthasel (purQ)	40.9\%	AF1031	DNA repair protein RAD32 (rad32)	37.6\%
AF1940	phosphoribosylformylgycinamidine synthasell ((pur)	41.5\%	AF0993	DNA repair protein RAD51 (radA)	59.3\%
AF0589	ribose-phosphate pyrophosphokinase (prsA-1)	35.0\%	AF2096	DNA repair protein REC	40.0\%
AF1419	ribose-phosphate pyrophosphokinase (prsA-2)	41.1\%	AF2418	DNA repair protein, putative	28.9\%
Pyrimidi	e ribonucleotide biosynthesis		AFF 1806 AFO940	DNA topoisomerase I (topA) DNA topoisomerase VI subunit A (top6 A)	
AF0106	aspartate carbamoyltransferase, c		AFO652	DNA topoisomerase VI , subunit B (top6B)	4.3.9\%
AF0017		60.7\%	AF1692	endonuclease III (n (${ }^{\text {a }}$)	44.3\%
	aspunit (pyrI)	48.2\%	AF0580	exodeoxyribonuclease III (xthA)	.3\%
	carbamoyl-phosphate synthase, large subunit ((carB)	65.1%		methylate-S-NA-protein-cy methyltansferase (ogt)	
AF1273	carbamoyl-phosphate synthase, small subunit (carA) CTP synthase (pyrG)	55.2%	AF7409	modification methylase, type III R / M system	314\%
-2250	dihydroorotase (pyic)	37.29\%	AF1234	mutator protein MutT (mut)	
AF0745	dihydroorotase dehydrogenase (pyrD)	44.8\%	AF2200	mutator protein MutT, putative	42.0\%
AF1741	orotate phosphoribosy transferase (pyF)	49.0\%	AFO335 AFO694	Proliferating-cell	3.29\%
AF0386	orotate phosphoribosyl transferase, putative	39.0\%	AFFio24	Tepication control proteen A , puta	. 7 . 2%
Salvage	- fnucleosides and nucleotides		AF0621	ribonuclease HII(mhB)	39.3\%
	adenine deaminase (adeC)		AF7715	type I restriction-modification enzyme, M subunit,	
AF1764	dCMP deaminase, putative	39.0\%		authentic frameshitt	63.0\%
AF1788	methythioadenosine phosphorylase (mtaP)	40.0\%	AF1708	typel restricitio-modidication enzyme, R subunit	38.2\%
AFF1341	thymidine phosphorylase (deoA-1)	46.7\%	AF7710	typel I restriction-modification enzyme, S subunit	33.0\%
	thymidine phosphorylase (deoA-2)	40.79\%	TRANSCR	Ption	
AFF1789	xantine-guanine phosshoribostransferase (gpt-1) xanthine-guarine phosphoribosyltransterase (gpt-2)	28.2\%	DNA-dep	endent RNA polymerase	
REGULAT	ORYFUNCTIONS		AF1888	DNA-directed RNA polymerase, subunit ${ }^{\text {(}}$ (poAA1)	63.6\%
			F1889	DNA-directed RNA polymerase, subunit A" (rpoA2)	
	(R)-hydroxyglutay-COA dehydratase activator (hgdC) arsenical	512% 3679		DNA-directed RNA polymerase, subunit B' (rpoB1) DNA-directed RNA polymerase, subunit $\mathrm{B}^{\prime \prime}$ (rpoB2)	65.3\% 57.1%
$\begin{aligned} & \text { AF0168 } \\ & \text { AF?२04 } \end{aligned}$	arsenical resistance operon repressor, putative arylsulfatase regulatory protein, putative	${ }_{\text {cher }}^{\text {36.79\% }}$	AFF 1886 AF2282	DNA-directed RAA polymerase, subunit $\mathrm{B}^{\text {" }}$ (rpoB2) DNA-directed RNA polymerase, subunit (rpoD)	${ }^{57.19 \%}$
AF0074	biotin operon reperessor bioitin-[acetyl CoA		AF1117	DNA-directed RNA polymerase, subunite'((roEE1)	48.4\%
	carboxylase] ligase (birA)	36.9\%	AF1116	DNA-directed RNA polymerase, subunite" (rpoE2)	40.0\%
AF1724	dinitrogenaserereductase activating glycohydrolase		AF1885	DNA-directed RNA polymerase, subunith ((poH)	59.5\%
	(draG)	379\%	AFF131	DNA-directed RNA polymerase, subunit ((rok)	${ }^{61.5 \%}$
AF2232	ferric uptake regulation protein (fur)	25.8\%	AFO207	DNA-directed RNA polymerase, subunit (rpoL)	42.0\%
AF1785	iron-dependentrepressor	42.0\%	AF1130	DNA-directed RNA polymerase, subunit ((rooN)	58.8\%
AFF2395	iron-dependent repressor	40.09\%	Transcrip	tionfactors	
AFO245 AF1984	irron-dependent repressor (desR) iron-dependentrepressor (troR)	${ }_{\text {28.3\% }}^{28.2 \%}$	AFrisi3	TBP-interacting protein TTP49	45.7\%
AF2430	lirandeependentreperessor(tron)	${ }_{\text {29.6\% }}$	AF1299	transcripition initiation factor IB	60.4\%
AF1622	leucine responsive regulatory protein (rp)	29.1\%	${ }_{\text {AFPO757 }}^{\text {AFO373 }}$	transcription initiation factor ID	59.4\%
AF0673	mercuric resistance operon regulatory protein (merR)	37.6\%	AFF1891		
AFF2425 AF1475	methanol dehydrogenase regulatory protein (moxR) mitochondrial benzodiazepine receptor/sensory	48.3\%		putative	
	mitochondrial benzodiazepine receptor/sensory transduction protein	38.4	AF1235	transcription-associated protein TFIIS	59.0\%
AF0198	monoamine oxidase regulatoy protein, putative	4.79\%	RNA pro		
AF1933	monoamine oxidase regulatory protein, putative	38.9\%	AF1783	dimethyladenosine transferase (ksgA)	44.7\%
AF0978	nitrogen regulatory protein P -11 (gin -1$)$	61.7\%	AF2087	fibrillarin (fib)	49,3\%
AF1747	nitrogen regulatory protein P-II (gin B -2)	58.0\%	AF0482	mRNA 3 -end processing factor, putative	55.5\%
AFF1750	nitrogen regulatory protein P-II ((gn \cap B-3)	60.7\%\%	AFO532	mRNA 3 -end processing factor, putative	39.19\%
AF0331	pheromone shutdown protein (traB)	40.5\%	AF2361	mRNA 3 -end processing factor, putative	30.5\%
AF1797	phosphate regulatory protein, putative	30.7\%	AF2399	rRNA methylase, putative	36.4\%
AF0521	protease synthase and sporulation regulator Pait,		AF0362	snRNP, putative	32.0\%
	putative	52.4\%	AF0875	ve	35.7\%
AF1793	repressororprotetein	54.5\%	TRANSLA		
AF0449	response regulator	38.1\%		(tand	
AF1063	response regulator	36.3% 425%	AFO894	alany-t-TNA Asythetase (alas) arginy-RNA synthetase (argS)	${ }_{48.8 \%}^{47.19 \%}$
AFF1256 AF1384	response regulator response regulator	42.5\%	AFo920	asparty -RNA synthetase (aspS)	62.5\%
AF1473	respo	32.5\%		cysteny-tRNA synthetase (cyss) dutamyl-FRNA synthetase (datx)	
AF1898	response regulator	48.7\%	AFO9916	gluamy-tiNA syntetease (git)	51.2\%
$\begin{aligned} & \text { AF2249 } \\ & \text { AF2419 } \end{aligned}$	response regulator	44.8\% ${ }^{\text {37.9\% }}$	AF1642	histidyl-RNA synthetase (hiss)	46.0\%

AF1935

PURINES, PYRIMDINES NUCLEOSIDES, AND NUCLEOTIDES

F000	RN	54	AFO633	isoleucyl-RNA synthetase (iles)	48.9\%	
AF0021	signaltransducing histidine kinase	26.19\%	AF2421	leucy 1 -tiNA synthetase (leus)	.7\%	
AF0208	signal-transducing histidine kinase	27.9\%	AF-1216	lysyl-RNA synthetase (lys)	43.6\%	
AF0450	signaltransducing histidine kinase	32.4\%	AF1453	methionyl-tRNA synthetase (metS)	45.2\%	
AF0770	signal-transducing histidine kinase	26.9\%	AF1955	phenylalany-tRNA synthetase, subunitalpha (pheS)	44.4\%	
AF0893	signal-transducing histidine kinase	28.7\%	AF1424	phenylalany-tRNA synthetase, subunit beta (pheT)	42.6\%	
AF1184	signal-transducing histidine kinase	29.8\%	AF1609	proly-tRNA synthetase (proS)	56.8\%	
AF1452	signaltransducing histidine kinase	28.5\%	AF2035	seryl-tRNA synth	45.4\%	
AF1467	signal-transducing histidine kinase	37.4\%	AF5548	threonyl-tRNA synthetase (thrs)	46.9\%	
AF1472	signaltransducing histidine kinase	30.4\%	AF1694	tryptophanyl-tRNA synthetase(trps)	52.4\%	
AF1483	signa-transducing histidine kinase	27.7\%	AF0776	tyrosy-tRNA synthetase (ty-S)	57.6\%	
AF1515	signaltransducing histidine kinase	32.0\%	AF2224	valy-tRNA synthetase (valS)	54.5\%	
AF1639	signal-transducing histidine kinase	${ }_{34.59}^{29.9 \%}$	Degradation of proteins, peptides, and glycoopeptides			
AFT721	signal-transducing histidine kinase	34.5%			66.0\%	
AF2109 AFO881	signal-transducing histidine kinase	31.0\%	AF1653	alkaline serine protease (aprM)	44.5\%	
AF0881	signal-transducing histidine kinase, authentic frameshift	26.5\%	AF0578	aminopeptidase, putative	2.8\%	
	signal-transducing histidine kinase, putative	29.8\%	AF0364	ATP-dependent protease La (lon)	36.6\%	
A10	signal-ransducing histidine kinase, putative	27.1\%	AF1946	cysteine proteinase, putative		
0448	signal-transducing histidine kinase, putative	26.1\%	AF1281	intracelluar rotease (pfppl)	5.0\%	
AF1620	signal-transducing histidine kinase, putative	26.2\%	${ }_{\text {AFOLO65 }}$	--silagalycoprotein endopepitidase (gcp)	(6\%\%	
AF2032	signal-transducing histidine kinase, putative	22.5\%	${ }_{\text {AF } 20086}^{\text {AFO65 }}$	--sialogyscoproterin endopepitiase, putaive	35.0% 37.0%	
AF2 2420 FFO42	Signal-transducing histidine kinase, putative	28.4% 37.26	AF0490	proteasome, subunita alpha (psm	8\%	
AF1516	sugar fermentation stimulation protein (sisA)	31.0\%	${ }_{\text {AFO2031 }}^{\text {AF2034 }}$	${ }_{\text {Preteasome, }}^{\text {Pubunit beta (psmB) }}$	58.3% 34.6%	
${ }_{\text {AF }}^{\text {AF } 1270}$	transcriptiona regulatory protein, Arsffamily	35.4\%	Protein modification		34.6\%	
	transcriptional regulatory protein, A Arsf family	32.3\%				
AF1853	transoripitional regulatoy protein, ArsR family	34.9\%	AF0656	antibiotic maturation protein (pmb	32.7\%	
AF2136	transcriptional regulatory protein, ArsR family	39.8\%	AF0378	CODH nickelinsertion accessory protein (cooC-1)	357\%\%	
AF0439	transcriptional regulatory protein, AsnC family	29.8\%	AF1685	CODH H nickl-insertion accessory protein (cooC-2)	47.4\%	
AF0474	transcriptional regulatory protein, AsnC family	51.0\%	AF1615	cofactor moditying protein (cmo)	27.2\%	
AFO584	transcriptional regulatory protein, AsnC family	35.3\%	AF2195	deoxyhypusine synthase (dys ${ }^{1-1}$)	32.6\%	
AF121	transcriptional regulatory protein, AsnC family	35.8\%	AF2300	deoxyhypusine synthase (dys $1-2$)	34.9\%	
AF1148	transcriptional regulatory protein, AsnC family	32.6\%	AFO381	diphthine synthase (dph5)	40.8\%	
AF1404	transcriptional regulatory protein, AsnC family	45.1\%	AF2324	fmu and fimv protein	40.0\%	
AF1448	transcripional regulatory protein, AsnC family	30.6\%	AF1367	hydrogenase expression/formation protein (1)	40.4\%	
AF1723	transoripitional regulatory protein, AsnC family	46.4	AF1368	hydrogenase expression/formation prote	54.4\%	
AF1743	transcripioional regulatory protein, AsnC family	34.9\%	AF1369	hydrogenase expression/formation protein (hypC)	40.5\%	
AF2127	transcripitional regulatory protein, LysR family	30.8\%	AF1370	hydrogenase expression/formation protein (hypD)	46.0\%	
AF0114	transcripitional regulatory protein, putative	35.6\%	AF1365	hydrogenase expression/formation protein (hypE)	51.5\%	
1968	transcriptional regulatory protein, Rok family	32.9\%	AF1366	hydrogenase express		
AFO112	transoripional regulatory protein, Sir2 family	38.9\%		protein (hypF)	\%	
AF1676 AF1817	transcriptional regulatory protein, Sir2 family transcriptional regulatory protein, TetR family	$\begin{aligned} & 40.6 \% \\ & 24.5 \% \end{aligned}$	AF0036	L-isoaspartyl protein carboxyl methyltransferase (pcm-1)		
AFO363	transcripional repressor (CinR)	27.5\%	AF2322	L-isoaspary		
REPLICATION				(pam-2)		
			AF1840	methionyl aminopeptidase (map)		
DNA replication, restriction, modification, recombination, and repair			AF1989	peptidy-proly cis-trans isomerase (slyD)	.4\%	
AF211	3-methyladenine DNA glycosylase (alkA)	30.0\%		ating-cell nucleolar antigen P 120 , putative	.7\%	
AF2060	activator 1, replication factor C, 35 K Da subunit	66.3\%	AF2039	proliferating-cell nucleolar antigen P 120 , putative	44.2\%	
AF1195	activator 1, replication factor C, 53 K La subunit	43.7\%	AF1449	pyruate formate-lyase 2 (pfiD)	.8\%	
AFO465	DNA gyrase, subunit A	48.4\%	AF1450	pyruvate formatelyase 2 activating enzyme (filC)	38.8\%	
AFO530	DNA gyrase, subunit B (gy	58.4\%	AF0017	pyruvate formate-lyase activating enzyme (act-1)	25.5\%	
AF1388	DNA helicase, putative	46.8\%	AF0918	pyruvate formate-lyase activating enzyme (act-2)	42.3\%	
AF1960	DNA helicase, putative	32.7\%	AF1330	pyruvate formate-lyase activating enzyme (act-3)	5.8\%	
AF0623	DNA ligase (lig)	44.4\%	AF2278	pyruvate formate-lyase activating enzyme (act-4)	42.5\%	
AF1725	DNA ligase, putative	32.7\%	AF1961	pyruvate formate-lyase activating enzyme (pfiX)	50.2\%	
AF0497	DNA polymerase B1 (polB)	45.1\%	AFO380	transmembrane oligosaccharyl transferase, putative	\%	
AFOO93AFO972AFF277	DNA polymerase $\mathrm{B2}$ (boxA), authentic framesh hit	32.3\%	AF0329	transmembrane oligosaccharyl transferase, putative	29.3\%	
	DNA polymerase lli,subunitepsilion (dnaQ)	${ }^{31.9 \% \%}$	Ribosomal proteins: synthesis and modification			
$\begin{aligned} & \text { AF2277 } \\ & \text { AF0742 } \end{aligned}$	DNA polymerase, bacterio DNA primase, putative	$\begin{aligned} & 36.9 \% \\ & 26.8 \% \end{aligned}$	AF1490	LSU ribosomal protein LP (rpliP)	48.6\%	
0264	DNA repair protein $\mathrm{RAD2}$ (rad2)	44.4\%	AF1922	LSU ribosomal protein L2P (rpl2P)	60.4\%	
AFо358	DNA repair protein RAD25	32.5\%	AF1925	LSU ribosomal protein L3P (rpl3P)	56.5\%	
AF1031	DNA repair protein RAD32 (rad32)	37.6\%	AF-1924	LSU ribosom protein 5 P (rol5P)	7\%	
0993	DNA repair rotein RAD51 (ra	59.3\%	AFF1909		5.79\%	
${ }_{\text {AF }}^{\text {AF2096 }}$	DNA repair protein REC	40.0%	AF0764	LSU ribosomal protein LTAE (rpl7aE)	60.79\%	
AF1806	DNA topoisomerasel ((topA)	36.2\%	AF1491	LSU ribosomal protein L10E (rpl10E)	45.6\%\%	
AFO940	DNA topoisomerase VI, subunit A (top6A)	39.8\%	AFO538	LSU ribosomal protein Li1P (prp11P)	8\%	
AF0652	DNA topoisomerase V1, subunit ((top6B)	43.9\%	${ }_{\text {AFP12 }}^{\text {AF128 }}$	LSU ribosomal protein L12A(rp112A)	$76.0 \% \%$ 474%	
	endonuclease III (nth)	${ }_{4}^{4.39 \%}$	AF1915	LSU ribosomal protein L14P (rpl1 1 P)	66.7\%	
$\begin{aligned} & \text { AF0580 } \\ & \text { AF2314 } \end{aligned}$	exodeoxyribonuclease methylated-DNA-protein		AF2319	LSU ribosomal protein L15E(rpl15E)	70.3\%	
	methyltransierase		AF1903	LSU ribosomal protein L15P (rpl 15P)	3.8\%	
AF1409	modification methylase, type III R / M system	31.4\%	AF1127	LSU ribosomal protein L18E([r\|18E)	53.8\%\%	
	mutator protein MutT (mut)	63.6\%		LSU ribosomal protein Li9E(rpl $19 E$)	5.5\%	
	mutator protein Mut, putative	${ }^{42.0 \% \%}$	AFF1529	LSU ribosomal protein L21E((rpl21E)	5.2\%	
AFO335	proliferating-cell Inuclear antigen (pol30)	33.7\%	AF1920	LSU Tibosomal protein L22P (rol22P)		
AF0694	repication control protein A, putative	30.2\%		LSU ribosomal protein L23P(rpl23P)		
1024	reverse gyrase (top-RG)	${ }^{40.79 \%}$	AF0537	LSU ribosomal protein L24A (rpl24A)	.4\%	
AF0621 AF1715	ribonuclease $\mathrm{Hl\mid l(mhn)}$ (typel restriction-modification enzyme, M subunit,		AF0766	LSU ribosomal protein L24E(rpl24E)	66.1\%	
	authentic frameshift	63.0\%	AF1914 AF1918	LSU ribosomal protein L24P (rpl24P)	57.8\%\%	
AF1708	typel I estriction-modification enzyme, R subunit	38.2\%	AFF1918 AF1890		. 7 . 7%	
AF1710	typel I restriction-modification enzyme, S subunit	33.0\%	AF1904	LSU ribsosomal protein L30P (rpl3 ${ }^{\text {app) }}$.9\%	
TRANSCRIPTION			AF2066	LSU ribosomal protein L31E (rp\|31E)	50.6\%	
	endent RNA polymerase		AF1908	LSU ribosomal protein L32E (r)	2\%	
	DNA-directed RNA polymerase, subunit A^{\prime} (rpoA1)	${ }^{63.6 \%}$	AFO874	LSU ribosomal Proteiein L37E (rpl37E)	.	
${ }_{\text {AFF1889 }}^{\text {AF188 }}$	DNA-directed RNA polymerase, subunit A" (rpoA2) DNA-directed RNA polymerase subunit $\mathrm{B}^{\prime}(\mathrm{poB} 1)$	55.7% 65.3%	${ }_{\text {AFP2067 }}$	LSU ribosomal protein L39E((rp13E)	56.9\% 56.9\%	
	DNA-diriected RNA polymerase, subunitit") (rooB2)	57.1\%	AF1430	LSU ribosomal protein L40E (rpl40E)	73.3\%	
AF2282	DNA-directed RNA polymerase, subunit ((rpod)	34.6\%	${ }_{\text {AFP2064 }}^{\text {AFP33 }}$	LSU ribosoma protein L44E (rpl44E)	46.8\%\% 53.8%	
F1117	DNA-directed RNA polymerase, subunit ${ }^{\text {E ' }}$ (roeE1)	48.4\%	${ }_{\text {AFO20739 }}$	ribosomal protein S 18 alarine a cetyltransferase	- 38.58%	
AFF116	DNA-directed RNA polymerase, subunit E" (rooE2)	40.0\%	AF2303	osomal protein S6 modificat	2\%	
AF1885	DNA-directed RNA polymerase, subunit H (rpoH)	${ }^{59.59 \%}$	AFF1133	SSU ribosomal protein S2P (rps2P)	58.3\%	
AF1131 AF0207	DNA-directed RNA polymerase, subunit K (rpoK) DNA-directed RNA polymerase, subunit (rpol)	61.5% 42.0%	AFF1919	SSU ribosomal protein S3P (rps3P)	50.0\%	
AF1130	DNA-directed RNA polymerase, subunit ((poN)	58.8\%	AF1913	SSU ribosomal protein S4E (rps4E)	48.9\%	
Transcription factors			AF1905	SSU ribosomal protein S5P (rps5P)	60.0\%	
AF1813	TPP-interacting protein TP49	45.7\%	AFO511	SSU ribosomal protein S6E (rs6E)	50.8\%	
AF1299	transcripition intitation factor IIB	60.4	AF1893	SSU ribosomal protein S7P (rss7P)	59.6\%	
AFO373	transcription initiation factor IID	59.4\%	AF2152	SSU ribosomal protein S8E(rps8E)	61.9\%	
${ }_{\text {AF }}^{\text {AFO759 }}$	transcription initiation factor $\\| \mathrm{E}$, subunit alpha, putativ transcriptiontermination-antitermination factor NusA		$\begin{aligned} & \text { AF1910 } \\ & \text { AF1129 } \end{aligned}$	SSU ribosomal protein S8P((ros8E)	64.6% 59.5%	
	transcription termination-antitermination factor NusA, putative	48.9	$\stackrel{\text { AFF1129 }}{\text { AFO938 }}$		59.5\%	
AF1235	transcripion-associated protein TFIIS	59.0\%	AF2283	SSU ribosomal protein S11P (rps 11P)	77.19\%	
RNA processing			AF1892	SSU Ibosomal protein S12P (rps 12P)	74.19\%	
1783	dimethyladenosine transferase (ksgA)	44.7\%	AFF1911	SSU ribosomal protein S14P (rps 14 P)	61.5\%	
AF2087	fibrillarin (fib)	493\%	AF0801	SSU ribosomal protein S15P (rps15P)	62.0\%	
AF0482	mRNA 3^{\prime}-end processing factor, putative	${ }^{55.59 \%}$	AF0911	SSU ribosomal protein ST7E((rpsi7E)	52.6\%	
AF2361	mRNA 3 -end processing factor, putative	30.5\%	AF1916	SSU U ibosomal protein ST7P (rps 17P)	59.0\%	
AF2399	rRNA methylase, putative	\%	AF2069	SSU ribosomal protein S 19 E (rps 19 E)	${ }^{64.2 \%}$	
AF0362	snRNP. putative	32.0\%	AFF-114	SSU ribosomal protetein S24E(1)SP2	29\%	
AF0875	snRNP, putative	35.7\%	AFF1113	SSU ribosomal protein S27AE (rps27AE)	- ${ }^{20.0 \%}$	
translation			AF1334	SSU ribosomal protein S27E (rps27E)	49.0\%	
Amino acyltrRN synthetasesAF2255 alayltPNA syntheta			AF0765 AF2320		55.6% 38.9%	
		47.1\% 48.8%	AF2320	SSU ribosomal protein S3AE (rPs3AE)	38.9\%	
AFo920	aspary-tRNA synthetase (aspS)	62.5\%	tRNA modification			
AF0411	cysteinyltrNA synthetase (cysS)	46.1\%	AF1954	GlutRNA Amidotranserase, subunit A (gat		
AFO260	glutamyl-tRNA synthetase (git)	44.9\%	AF2329	Glu-RNA Amidotransferase, subunit A (gat-2)	53.5\%	
${ }_{\text {AFFI642 }}$	glycyl-tRNA synthetase (glyS) histidyl-tRNA synthetase (hisS)	- 412.0%	AF1440 AF2116	Glu-tRNA a midotransferase, subunit B (gatB-1) Glu-tRNA amidotransferase, subunit B (gatB-2)	$54.7 \% \%$ 46.4%	

AF2328	Glu-tRNA amidotransferase, subunit C (gatC)	35.1\%
AF0815	N2,N2-dimethylguanosine tRNA methyltransferase (trm1)	\%
AF1730	pseudouridylate synthasel (truA)	37.4\%
AF1485	queuinetRNA-ribosyltransferase (tgtB)	44.1\%
AF0493	ribonuclease PH (rph)	30.8\%
AF0900	tRNA intron endonuclease (endA)	41.8\%
AF2156	tRNA nucleotidy ${ }^{\text {litansferase (cca) }}$	\%
Translation factors		
AF2350	ATP-dependent RNA helicase HepA, putative	31.5\%
AF2254	ATP-dependent RNA helicase, DEAD-family (deaD)	\%
AF0071	ATP-dependent RNA helicase, putative	29.6\%
AF1458	ATP-dependent RNA helicase, putative	48.1\%
AF2406	ATP-dependent RNA helicase, putative	\%
AF1149	large helicase-related protein (lhr-1)	34.5\%
AF2177	large helicase-related protein (lhr-2), authentic frameshift	56.0\%
AF1220	peptide chain release factor eRF, subunit 1	51.2\%
AF2245	SK12-family helicase, authentic frameshift	45.7\%
AF0937	translation elongation factor EF-1, subunitalpha (tuf)	74.4\%
AF0574	translation elongation factor EF-1, subunit beta	31.3
AF1894	translation elongation factor EF-2 (fus)	62.5\%
AF0777	translation initiation factor elF-1A (eif1A)	57.5\%
AF0527	translation initiation factor elF-2, subunit alpha (eif2A)	51.1\%
AF2326	translation initiation factor elF-2, subunit beta, putative	45.5\%
AF0592	translation initiation factor elF-2, subunitgamma(eif2G)	64.4\%
AF0370	translation initiation factor elF-2B, subunit delta (eif2BD)	53.3\%
AF2037	translation initiation factor elF-2B, subunit delta (eif2BD)	57.9\%
6645	translation initiation factor elf-5A (eif5A)	50.4\%
AF0768	translation initiation factor IF-2 (infB)	52.2\%
TRANSPORT AND BINDING PROTEINS		
General		
AF0393	ABC transporter, ATP-binding protein	34.5\%
F0984	ABC transporter, ATP-binding protein	35.2\%
AF1006	ABC transporter, ATP-binding protein	.1\%
AF1018	ABC transporter, ATP-binding protein	57.7\%
AF1021	ABC transporter, ATP-binding protein	37.8\%
AF1136	ABC transporter, ATP-binding protein	39.3\%
AF1139	ABC transporter, ATP-binding protein	38.2\%
AF1300	ABC transporter, ATP-binding protein	34.1\%
AF1469	ABC transporter, ATP-binding protein	43.5\%
AF1819	ABC transporter, ATP-binding protein	51.1\%
AF1982	ABC transporter, ATP-binding protein	41.3\%
AF2364	ABC transporter, ATP-binding protein	53.5\%
AF1005	ABC transporter, ATP-binding protein, putative	28.7\%
AF1064	ABC transporter, ATP-binding protein, putative	36.0\%
AF1983	ABC transporter, periplasmic binding protein	25.4\%
AF1981	ABC transporter, permease protein	29.9\%
AF1995	sodium- and chloride-dependentransporter	52.5\%
Amino acids, peptides and amines		
AF1766	amino-acid ABC transporter, periplasmic binding protein/protein kinase	27.4\%
AF0222	branched-chain amino acid $A B C$ transporter, ATP-binding protein (braF-1)	42.7\%
AF0822	branched-chain amino acid ABC transporter, ATP-binding protein (braF-2)	.7\%
AF0959	branched-chain amino acid ABC transporter, ATPbinding protein (braF-3)	37.6\%
AF1390	branched-chain amino acid ABC transporter, ATP-binding protein (braF-4)	
AF0221	branched-chain amino acid ABC transporter,	
	ATP-binding protein (braG-1)	48.2\%
AF0823	branched-chain amino acid ABC transporter, ATP-binding protein (braG-2)	42.9\%
AF0958	branched-chain amino acid ABC transporter, ATP-binding protein (braG-3)	34.1\%
F1389	branched-chain amino acid ABC transporter, ATPbinding protein (braG-4)	64.6\%
AF0223	branched-chain amino acid ABC transporter, periplasmic binding protein (braC-1)	34.3\%
AF0827	branched-chain amino acid $A B C$ transporter, periplasmic binding protein (braC-2)	26.8\%
AF0962	branched-chain amino acid ABC transporter, periplasmic binding protein (braC-3)	25.6\%
AF1391	branched-chain amino acid $A B C$ transporter, periplasmic binding protein (braC-4)	50.1\%
AFO224	branched-chain amino acid ABC transporter, permease protein (braD-1)	25.4\%
AF0825	branched-chain amino acid ABC transporter, permease protein (braD-2)	30.8\%
AF0961	branched-chain amino acid ABC transporter, permease protein (braD-3)	23.9\%
AF1392	branched-chain amino acid ABC transporter, permease protein (braD-4)	65.4\%
AFO225	branched-chain amino acid ABC transporter, permease protein (braE-1)	28.7\%
AF0824	branched-chain amino acid ABC transporter, permease protein (braE-2)	31.3\%
AF0960	branched-chain amino acid ABC transporter, permease protein (braE-3)	30.1\%
AF1393	branched-chain amino acid ABC transporter, permease protein (braE-4)	60.5\%
AF1612	cationic amino acid transporter (cat-1)	29.5\%
AF1774	cationic amino acid transporter (cat-2)	38.0\%
AF1770	dipeptide ABC transporter, ATP-binding protein (dppD)	47.8\%
$\begin{aligned} & \text { AF1771 } \\ & \text { AF1767 } \end{aligned}$	dipeptide ABC transporter, ATP-binding protein (dppF) dipeptide $A B C$ transporter, dipeptide-binding	

	protein (dppA)	33.1\%
68	dipeptide ABC transporter, permease protein (dppB)	
AF1769	dipeptide ABC transporter, permease protein (dppC)	40.8
AF0680	glutamine ABC transporter, ATP-binding protein (glnQ)	6
AF0231	glutamine ABC transporter, periplasmic glutaminebinding protein (glnH)	38.0\%
AF0232	glutamine $A B C$ transporter, permease protein (glnP)	39.3\%
AF0981	osmoprotection protein (proV)	39.0\%
AF0979	osmoprotection protein (prow-1)	32.8
AF0980	osmoprotection protein (proW-2)	36.8\%
AF0982	osmoprotection protein (proX)	28.7\%
AF0015	proline permease (putP-1)	26.2
AF0969	proline permease (putP-2)	27.4
AF1222	proline permease (putP-3)	27.0\%
AF1608	spermidine/putrescine ABC transporter, ATPbinding protein (potA)	50.2\%
AF1605	spermidine/putrescine ABC transporter, periplasmic spermidine/putrescine-binding protein (potD), authentic frameshift	31.0\%
AF1607	spermidine/putrescine ABC transporter, permease protein (potB)	38.0\%
AF1606	spermidine/putrescine ABC transporter, permease protein (potC)	38.7\%
Ani		
AF2308	arsenite transport protein (arsB)	27.3\%
AF1415	chloride channel, putative	27.3\%
AF0025	cyanate transport protein (cynX)	24.5\%
AF0087	nitrate ABC transporter, ATP-binding protein (ntC-1)	47.4\%
AF0638	nitrate ABC transporter, ATP-binding protein (nrtC-2)	55.5\%
AF0640	nitrate ABC transporter, ATP-binding protein, putative	32.5%
AF0086	nitrate ABC transporter, permease protein (ntB-1)	35.4\%
AF0639	nitrate ABC transporter, permease protein (nrtB-2)	37.4\%
AF1359	phosphate ABC transporter, ATP-binding protein (pstB)	66.0\%
AF1356	phosphate $A B C$ transporter, periplasmic phosphatebinding protein (phoX)	25.1\%
AF1358	phosphate ABC transporter, permease protein (pstA)	34.1\%
AF1357	phosphate ABC transporter, permease protein (pstC)	33.7\%
AF1360	phosphate ABC transporter, regulatory protein (phol)	26.9\%
AF0791	phosphate permease, putative	31.1\%
AF1798	phosphate permease, putative	52.9\%
AF0092	sulfate ABC transporter, ATP-binding protein (cysA)	54.2\%
AF0093	sulfate ABC transporter, permease protein (cysT)	44.1\%
Carbohydrates, organic alcohols, and acids		
AF0347	C4-dicarboxylate transporter (mae1)	24.5\%
AF1426	glycerol uptake facilitator, MIP channel (glpF)	36.2\%
AF0013	hexuronate transporter (exuT)	25.1\%
AF0806	L-lactate permease (litP)	31.7\%
AF0008	oxalate/formate antiporter (ox\|T-1)	25.7\%
AF0367	oxalate/formate antiporter (0x\|T-2)	33.2\%
AF1069	pantothenate permease (panF-1)	28.9\%
AF1205	pantothenate permease (panF-2)	24.8\%
AF0237	pantothenate permease (panF-3)	25.1\%
AF0041	polysaccharide ABC transporter, ATP-binding protein (ffbB-1)	42.5\%
AF0290	polysaccharide $A B C$ transporter, ATP-binding protein (ffbB-2)	43.9\%
AF0042	polysaccharide ABC transporter, permease protein (ffbA-1)	27.5\%
AF0289	polysaccharide $A B C$ transporter, permease protein (ffbA-2)	28.5\%
AF0887	ribose ABC transporter, ATP-binding protein (rbsA-1)	33.3\%
AF1170	ribose ABC transporter, ATP-binding protein (rbsA-2)	27.9\%
AF0888	ribose ABC transporter, permease protein (rbsC-1)	24.1\%
AF0889	ribose ABC transporter, permease protein (rbsC-2)	31.2\%
AF2014	sugar transporter, putative	26.0\%
Cations		
AF0977	ammonium transporter (amt-1)	44.3\%
AF1746	ammonium transporter (amt-2)	49.0\%
AF1749	ammonium transporter (amt-3)	41.5\%
AF0473	cation-transporting ATPase, P-type (pacS)	44.0\%
AF0152	copper-transporting ATPase, P-type (copB)	44.5\%
AF0246	iron (II) transporter (feoB-1)	33.3\%
AF2394	iron (II) transporter (feoB-2)	48.0\%
AF0561	iron (II) transporter (feoB-3), authentic frameshift	29.4\%
AF0430	iron (III) ABC transporter, ATP-binding protein (hemV-1)	50.4\%
AF0432	iron (III) ABC transporter, ATP-binding protein (hemV-2)	58.7\%
AF1401	iron (III) ABC transporter, ATP-binding protein (hemV-3)	35.2\%
AF1397	iron (III) $A B C$ transporter, periplasmic hemin-binding pros (hemT), authentic frameshift	$\begin{aligned} & \text { rotein } \\ & \text { 28.2\% } \end{aligned}$
AF0431	iron (III) ABC transporter, permease protein (hemU-1)	36.2\%
AF1402	iron (III) ABC transporter, permease protein (hemU-2)	35.2\%
AF0786	magnesium and cobalt transporter (corA)	40.1\%
AF0346	mercuric transport protein periplasmic component (merP)	35.2\%
AF0217	$\mathrm{Na}+/ \mathrm{H}+$ antiporter (napA-1)	28.2\%
AF1245	$\mathrm{Na}+/ \mathrm{H}+$ antiporter (napA-2)	28.4\%
AF0846	$\mathrm{Na}+/ \mathrm{H}+$ antiporter (nhe2)	33.1\%
AF0715	potassium channel, putative	39.5\%
AF1673	potassium channel, putative	36.3\%
AF2197	potassium channel, putative	24.6\%
AF0218	TRK potassium uptake system protein (trkA-1)	30.2\%
AF0838	TRK potassium uptake system protein (trkA-2)	42.9\%
AF0839	TRK potassium uptake system protein (trkH)	39.8\%
Other		
AF0834	ferritin, putative	39.8\%
AF1980	heme exporter protein C (helC)	29.0\%
AF1144	multidrug resistance protein	29.2\%
AF1325	multidrug resistance protein	29.9\%

OTHERCATEGORIES
Adaptations and atypical conditions

AF0508	ethylene-inducible protein	74.5\%
AF0235	heat shock protein (htpX)	32.9\%
AF0942	surE stationary-phase survival protein (surE)	50.2\%
AF1996	virulence associated protein C (vapC-1)	50.0\%
AF1690	virulence associated protein C (vapC-2)	30.0\%
Drug and analog sensitivity		
AF1884	daunorubicin resistance ATP-binding protein (drrA)	47.19
AF1883	daunorubicin resistance membrane protein (drrB)	27.0\%
AF0487	penicillin G acylase	31.7%
AF1214	phenylacrylic acid decarboxylase (pad1)	43.2\%
AF2194	rRNA (adenine-N6)-methyltransferase, putative	29.2\%
AF1696	small multidrug export protein (qacE)	39.0\%

Transposon-related functions		
AF0120	insertion sequence ISHS1, authentic frameshift	34.5\%
AF0193	ISA0963-1, putative transposase, authentic frameshift	34.3\%
AF0309	ISA0963-2, putative transposase	33.5\%
AF1310	ISA0963-3, putative transposase	33.5\%
AF1383	ISA0963-4, putative transposase	33.5\%
AF1410	ISA0963-5, putative transposase	33.5\%
AF1705	ISA0963-6, putative transposase	33.5\%
AF1836	ISA0963-7, putative transposase, authentic frameshift	20.0\%
AF0678	ISA1083-1, ISORF2	33.6\%
AF0679	ISA1083-1, putative transposase	37.2\%
AF1351	ISA1083-2, ISORF2	30.8\%
AF1352	ISA1083-2, putative transposase	31.5\%
AF2140	ISA1083-3, ISORF2	30.8\%
AF2139	ISA1083-3, putative transposase	31.5\%
AF0278	ISA12141, ISORF2	27.7\%
AF0279	ISA1214-1, putative transposase	33.3\%
AF0305	ISA1214-2, ISORF2	27.7\%
AF0306	ISA1214-2, putative transposase	33.3\%
AF0641	ISA1214-3, ISORF2	26.5\%
AF0642	ISA1214-3, putative transposase	33.3\%
AF0857	ISA1214-4, ISORF2	27.7\%
AF0858	ISA1214-4, putative transposase	33.3\%
AF2091	ISA1214-5, ISORF2	26.5\%
AF2092	ISA1214-5, putative transposase	33.3\%
AF2223	ISA1214-6, ISORF2	26.5\%
AF2222	ISA1214-6, putative transposase	25.6\%
AF0138	transposase IS240-A	43.3\%
AF0895	transposase IS240-A	46.2\%
AF2390	transposase, authentic frameshift	24.0\%
AF0137	transposase, putative	29.6\%
AF1628	transposase, putative	32.8\%
UNKNOWN		
AF0477	AAA superfamily ATPase	35.0\%
AF0513	allene oxide synthase, putative	39.5\%
AF0478	ATP-binding protein PhnP (phnP)	30.9\%
AF1775	atrazine chlorohydrolase, putative	34.4\%
AF0973	bile acid-inducible operon protein F (baiF-1)	30.8\%
AF0974	bile acid-inducible operon protein F (baiF-2)	29.9\%
AF1315	bile acid-inducible operon protein F (baiF-3)	31.3\%
AF2063	c-myc binding protein, putative	21.7\%
AF1992	calcium-binding protein, putative	31.2\%
AF2287	carotenoid biosynthetic gene ERWCRTS, putative	49.4\%
AF0512	chloroplast inner envelope membrane protein	42.5\%
AF2251	competence-damage protein, putative	28.0\%
AF0090	dehydrase	34.1\%
AF1498	dehydrase, putative	29.4\%
AF1518	DNA/pantothenate metabolism flavoprotein, putative	51.4\%
AF0039	dolichol-P-glucose synthetase, putative	33.7\%
AF0328	dolichol-P-glucose synthetase, putative	39.0\%
AF0581	dolichol-P-glucose synthetase, putative	27.5\%
AF0569	DR-beta chain MHC class II	37.7\%
AF0383	endonuclease III, putative	47.1\%
AF1150	erpK protein, putative	54.9\%
AF2372	extragenic suppressor (suhB)	37.0\%
AF1418	glycerol-3-phosphate cytidytransferase (taqD)	56.6\%
AF0744	GTP-binding protein	33.4\%
AF1181	GTP-binding protein	36.3\%
AF1364	GTP-binding protein	57.5\%
AF2146	GTP-binding protein	65.9\%
AF0428	GTP-binding protein, GTP1/OBG-family	43.9\%
AF2237	HAM1 protein	31.4\%
$\begin{aligned} & \text { AF2211 } \\ & \text { AF0216 } \end{aligned}$	HIT family protein (hit)	29.6\%
	L-isoaspartyl protein carboxyl methyltransferase	
	PimT, putative	35.5\%
AF2313	maoC protein (maoC)	43.0\%
AF0429	methyltransferase	43.8\%
AF0186	nifS protein, class-V aminotransferase (nifS-1)	46.1\%
AF0564	nifS protein, class-V aminotransferase (nifS-2)	45.1\%
AF0185	nifU protein (nifu-1)	55.6\%
AF0565	nifU protein (nifu-2)	55.6\%
AF0632	nifU protein (nifu-3)	47.4\%
AF1781	nodulation protein NfeD (nfe)	33.4\%
AF2269	nucleotide-binding protein	48.7\%
AF2382	nucleotide-binding protein	49.1\%
AF0374	p-nitrophenyl phosphatase (pho2)	31.7\%
AF1978	periplasmic divalent cation tolerance protein (cutA)	31.3\%
AF1652	prepro-subtilisin sendai, putative	35.6\%
AF2021	rod shape-determining protein (mreB)	26.6\%
AF1778	stage V sporulation protein (spoVG)	43.9\%
AF1970	TPR domain-containing protein	29.0\%
AF2202	tryptophan-specific permease, putative	25.2\%
AF0816	vtpJ-therm, putative	42.1\%
AF1679	vtpJ-therm, putative	45.1\%

