Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-dependent ordering of water molecules at an electrode–electrolyte interface

Abstract

THE arrangement of water molecules at charged, aqueous interfaces is an important question in electrochemistry, geochemistry and biology. Theoretical studies1–11 suggest that the molecules become arranged in several layers adjacent to a solid interface, with densities similar to that in the bulk, and that the molecules in the first layer are reoriented from oxygen-up to oxygen-down as the electrode charge changes from negative to positive. Few of these predictions have been verified experimentally12–16, however. Using X-ray scattering, we have measured the water density profile perpendicular to a silver (111) surface at two applied voltages. We find that the water molecules are ordered in layers extending about three molecular diameters from the electrode, and that the spacing between the electrode and first water layer indicates an oxygen-up (oxygen-down) average orientation for negative (positive) charge. Contrary to current models, however, we find that the first layer has a far greater density than that in bulk water. This implies that the hydrogen-bonding network is disrupted in this layer, and that the properties of the water in the layer are likely to be very different from those in the bulk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bockris, J. O'M., Conway, B. E. & Yeager, E. Comprehensive Treatise of Electrochemistry Vol. 1 (Plenum, New York, 1980).

    Book  Google Scholar 

  2. Fawcett, W. R., Levine, S., deNobriga, R. M. & McDonald, A. C. J. electroanalyt. Chem. 111, 163–180 (1980).

    Article  CAS  Google Scholar 

  3. Lee, C. Y., McCammon, J. A. & Rossky, R. J. J. chem. Phys. 80, 4448–4455 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Patey, G. N. & Torrie, G. M. Chimica Scripta 29A, 39–47 (1989).

    CAS  Google Scholar 

  5. Schmickler, W. & Henderson, D. Prog. Surf. Sci. 22, 323–420 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Price, D. & Halley, J. W. Phys. Rev. B38, 9357–9367 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Glosli, J. N. & Philpott, M. R. J. chem. Phys. 96, 6962–6969 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Spohr, E. J. phys. Chem. 93, 6171–6180 (1989).

    Article  CAS  Google Scholar 

  9. Raghavan, K., Foster, K. & Berkowitz, M. Chem. Phys. Lett. 177, 426–432 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Nagy, G. & Heinzinger, K. J. electroanalyt. Chem. 327, 25–30 (1992).

    Article  CAS  Google Scholar 

  11. Alosi, G., Foresti, M. L., Guidelli, R. & Barnes, P. J. chem. Phys. 91, 5592–5596 (1989).

    Article  ADS  Google Scholar 

  12. Porter, J. D. & Zinn, A. S. J. phys. Chem. 97, 1190–1203 (1993).

    Article  CAS  Google Scholar 

  13. Russell, A. E., Lin, A. S. & O'Grady, W. E. J. chem Soc., Faraday Trans. 89, 195–198 (1993).

    Article  CAS  Google Scholar 

  14. Habib, M. A. & Bockris, J. O'M. Langmuir 2, 388–392 (1986).

    Article  CAS  Google Scholar 

  15. Wang, J., Ocko, A. J., Davenport, A. J., & Isaacs, H. S. Phys. Rev. B46, 10321–10338 (1992).

    Article  CAS  Google Scholar 

  16. Pashley, R. M., Israelachvili, J. N. & Coll, J. Interface Sci. 101, 511–523 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Toney, M. F. in X-ray Methods in Corrosion and Interfacial Electrochemistry (eds Davenport, A. J. & Gordon, J. G.) 1–24 (The Electrochemical Society, Pennington, 1992).

    Google Scholar 

  18. Toney, M. F. et al. Phys. Rev. B45, 9362–9374 (1992).

    Article  CAS  Google Scholar 

  19. Feidenhans'l, R. Surf. Sci. Rep. 10, 105–188 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Hamelin, A., Morin, S., Richer, J. & Lipkowski, J. J. electroanalyt. Chem. 272, 241–252 (1989).

    Article  CAS  Google Scholar 

  21. Valette, G. J. electroanalyt. Chem. 269, 191–203 (1989).

    Article  CAS  Google Scholar 

  22. Valette, G. & Hamelin, A. J. electroanalyt. Chem. 45, 301–319 (1973).

    Article  CAS  Google Scholar 

  23. Stout, G. H. & Jensen, L. H. X-ray Structure Determination: A Practical Guide (Wiley, New York, 1989).

    Google Scholar 

  24. Conway, B. E. Chem. Soc. Rev. 253–261 (1992).

    Article  CAS  Google Scholar 

  25. Heinzinger, K. Pure appl. Chem. 57, 1031–1042 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toney, M., Howard, J., Richer, J. et al. Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368, 444–446 (1994). https://doi.org/10.1038/368444a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368444a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing