Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates

Abstract

MANY bacteria oxidize thermodynamically unstable manganese(II) to Mn oxides and deposit the oxides on their surfaces1,2, a process that appears to account for most Mn oxidation in natural waters3–5 and sediments6. Among the reasons that have been proposed for the evolutionary selection of this process are protection from damage by toxic metals and oxygen species, protection from ultraviolet light, and strengthening of the bacterial sheath or capsule1,7. Mn oxides may promote harmful free radical reactions, however, and marine Mn-oxidizing bacteria are particularly susceptible to photoinhibition8. Here we report that Mn oxides lyse complex humic substances, which in general cannot be used by microorganisms directly9–11, to form low-molecular-weight organic compounds that can be used as substrates for microbial growth. Mn-oxidizing bacteria may thus be able to use the carbon pool in humic substances, which represent one of the largest organic reservoirs in natural waters, sediments and soils.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ghiorse, W. C. A. Rev. Microbiol. 38, 515–550 (1984).

    Article  CAS  Google Scholar 

  2. Cowen, J. P. & Bruland, K. W. Deep-Sea Res. 32, 253–272 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Ghiorse, W. C. in Current Perspectives in Microbial Ecology (eds Klug, M. J. & Reddy, C. A.) 615–621 (ASM, Washington DC, 1984).

    Google Scholar 

  4. Tebo, B. M. & Emerson, S. Appl. environ. Microbiol. 50, 1268–1273 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sunda, W. G. & Huntsman, S. A. Limnol. Oceanogr. 32, 552–564 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Kepkay, P. E. Limnol. Oceanogr. 30, 713–726 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Emerson, D. & Ghiorse, W. C. Appl. environ. Microbiol. 58, 4001–4010 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sunda, W. G. & Huntsman, S. A. Limnol. Oceanogr. 35, 325–338 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Mopper, K. & Degens, E. T. in The Global Carbon Cycle (eds Bolin, B., Degens, E. T., Kempi, S. & Ketner, P. (Wiley, New York, 1979).

    Google Scholar 

  10. Geller, A. Limnol. Oceanogr. 31, 755–764 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Amador, J. A., Alexander, M. & Zika, R. G. Appl. environ. Microbiol. 55, 2843–2849 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sunda, W. G., Huntsman, S. A. & Harvey, G. R. Nature 301, 234–236 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Waite, T. D., Wrigley, I. C. & Szymczak, R. Environ. Sci. Technol. 22, 778–785 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Stone, A. T. & Morgan, J. J. Environ. Sci. Technol. 18, 617–624 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Stone, A. T. Geochim. cosmochim. acta 51, 919–925 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Kieber, R. J. & Mopper, K. Environ. Sci. Technol. 24, 1477–1481 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Kieber, D. J. & Mopper, K. Mar. Chem. 21, 135–149 (1987).

    Article  CAS  Google Scholar 

  18. Stone, A. T. & Morgan, J. J. Environ. Sci. Technol. 18, 450–456 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Kieber, D. J., McDaniel, J. & Mopper, K. Nature 341, 637–639 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Aller, R. C. Phil. Trans. R. Soc. 331, 51–68 (1990).

    Article  ADS  CAS  Google Scholar 

  21. van den Berg, C. J. M. & Kramer, J. R. Analyst. Chem. Acta 106, 113–120 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunda, W., Kieber, D. Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates. Nature 367, 62–64 (1994). https://doi.org/10.1038/367062a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367062a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing