Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient phase-matched second-harmonic generation of blue light in an organic waveguide

Abstract

THE development of materials for the efficient frequency-doubling of low-power semiconductor lasers is a technologically important goal for which several important challenges remain. The ease of processing and high intrinsic optical nonlinearity of organic materials1,2 makes them attractive for such applications, and it has been demonstrated that molecular-assembly techniques can achieve the macroscopic non-centrosymmetric order required for bulk nonlinear optical activity3,4. But to achieve efficient power conversion, a promising material must also exhibit low attenuation of light at high power densities, and match phase velocities over relatively long distances for light at the fundamental and second-harmonic frequencies5. Here we report the fabrication by Langmuir– Blodgett deposition of a low-loss optical waveguide in which precise control of the film thickness, together with inversion of the nonlinear susceptibility across the film, are used to simultaneously achieve phase matching and improve the optical–field overlap between the propagating (fundamental and second-harmonic) waveguide modes. The resulting structure converts low-power near-infrared laser light efficiently to blue light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Khanarian, G. & Norwood, R. A. in Nonlinear Optics: Fundamentals, Materials, and Devices (ed. Miyata, S.) 461–472 (Elsevier, Amsterdam, 1992).

    Book  Google Scholar 

  2. Staring, E. G. J., Rikken, G. L. J. A., Seppen, C. J. E., Nijhuis, S. & Venhuizen, A. H. J. Adv. Mater. 3, 401–403 (1991).

    Article  CAS  Google Scholar 

  3. Ashwell, G. J., Hargreaves, R. C., Baldwin, C. E., Bahra, G. S. & Brown, C. R. Nature 357, 393–395 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Roberts, G. G. Ferroelectrics 91, 21–38 (1989).

    Article  CAS  Google Scholar 

  5. Prasad, P. N. & Williams, D. J. Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

    Google Scholar 

  6. Clays, K., Armstrong, N. J., Ezenyilimba, M. C. & Penner, T. L. Chem. Mater. 5, 1032–1036 (1993).

    Article  CAS  Google Scholar 

  7. Penner, T. L. et al. Molec. Cryst. Liq. Sci. Technol. 4, 191–209 (1993).

    CAS  Google Scholar 

  8. Girling, I. R. et al. Thin Solid Films 132, 101–112 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Hönig, D. & Möbius, D. J. phys. Chem. 95, 4590–4592 (1991).

    Article  Google Scholar 

  10. Hunsperger, R. G. Integrated Optics: Theory and Technology (Springer, New York, 1982).

    Book  Google Scholar 

  11. Jain, K. & Hewig, G. H. Opt. Commun. 36, 483–486 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Williams, D. J. in Electronic and Photonic Applications of Polymers (eds Bowden, M. J. & Turner, S. R.) 297–330 (Am. chem. Soc., Washington DC, 1988).

    Book  Google Scholar 

  13. Akhmedev, N. N. & Novak, V. R. Opt. Spektrosc. 58, 558–559 (1985).

    ADS  Google Scholar 

  14. Stegeman, G. I., Seaton, C. T. & Zanoni, R. Thin Solid Films 152, 231–263 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Somekh, S. & Yariv, A. Opt. Commun. 6, 301–303 (1972).

    Article  ADS  Google Scholar 

  16. Lim, E. J., Fejer, M. M., Byer, R. L. & Kozlovsky, W. J. Electron. Lett. 25, 731–732 (1989).

    Article  Google Scholar 

  17. Yamada, M., Nada, N., Saitoh, M. & Watanabe, K. Appl. Phys. Lett. 62, 435–436 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Burland, D. M., Miller, R. D., Reiser, O., Twieg, R. J. & Walsh, C. A. J. appl. Phys. 71, 410–417 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Motschmann, H. R., Penner, T. L., Armstrong, N. J. & Ezenyilimba, M. C. J. phys. Chem. 95, 3933–3936 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penner, T., Motschmann, H., Armstrong, N. et al. Efficient phase-matched second-harmonic generation of blue light in an organic waveguide. Nature 367, 49–51 (1994). https://doi.org/10.1038/367049a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367049a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing