Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-electron transfer in metallic nanostructures

Abstract

Electrons can be made to pass through a circuit one by one, in nanoscale devices based on the combination of the Coulomb interaction between electrons and their passage by quantum tunnelling through an insulating barrier. Single-electron devices provide a new way of measuring the charge quantum, and clarify how electronic signal processing at the molecular level might function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eigler, D. M. & Schweizer, E. K. Nature 344, 524 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Wineland, D. J., Itano, W. M. & Van Dyck, R. S. Jr Adv. atom. molec. Phys. 19, 135 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Van Dyck, R. S. Jr, Schwinberg, P. B. & Dehmelt, H. G. Phys. Rev. D34, 722 (1986).

    ADS  CAS  Google Scholar 

  4. Millikan, R. A. Phys. Rev. 32, 349 (1911).

    ADS  CAS  Google Scholar 

  5. Solymar, L. Superconductive Tunneling, Ch. 2 (Chapman and Hall, London. 1972).

    Google Scholar 

  6. Büttiker, M. & Landauer, R. Phys. Rev. Lett. 49, 1739 (1982).

    Article  ADS  Google Scholar 

  7. Personn B. N. J. & Baratoff, A. Phys. Rev. B38, 9616 (1988).

    Article  ADS  Google Scholar 

  8. Lafarge, P. et al. Z. Phys. B85, 327 (1981).

    Article  Google Scholar 

  9. Esteve, D. Single Charge Tunneling, Ch. 3 (ed. Grabert, H. & Devoret, M. H.) (Plenum, New York, 1992).

    Google Scholar 

  10. Matveev, K. A. Zh. eksp. teor. Fiz. 99, 1598 (1991); (Engl. transl.) Sov. Phys. JETP 72, 892 (1991).

    Google Scholar 

  11. Gorter, C. J. Physica 17, 777 (1951).

    Article  ADS  Google Scholar 

  12. Neugebauer, C. A. & Webb, M. B. J. appl. Phys. 33, 74 (1962).

    Article  ADS  CAS  Google Scholar 

  13. Giaver, I. & Zeller, H. R. Phys. Rev. Lett. 20, 1504 (1968).

    Article  ADS  Google Scholar 

  14. Lambe, J. & Jaklevic, R. C. Phys. Rev. Lett. 22, 1371 (1969).

    Article  ADS  Google Scholar 

  15. Kulik, I. O. & Shekter, R. I. Zh. eksp. teor. Fiz. 68, 623 (1975); (Engl. transl.) Sov. Phys. JETP 41, 308 (1075).

    Google Scholar 

  16. Dolan, G. J. & Dunsmuir, J. H. Physica B152, 7 (1988).

  17. Fulton, T. A. & Dolan, G. J. Phys. Rev. Lett. 59, 109 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Likharev, K. K. & Zorin, A. B. J. low Temp. Phys. 59, 347 (1985).

    Article  ADS  Google Scholar 

  19. Averin, D. V. & Likharev, K. K. J. low Temp. Phys. 62, 345 (1986).

    Article  ADS  Google Scholar 

  20. Widom, A., Megaloudis, G., Clark, T. D., Prance, H. & Prance, R. J. J. Phys. A15, 3877 (1982).

    ADS  Google Scholar 

  21. Ben-Jacob, E. & Gefen, Y. Phys. Lett. A108, 289 (1985).

    Article  Google Scholar 

  22. Nazarov, Yu. V. Pis'maZh. eksp. teor. Fiz. 49, 105 (1989); (Engl. transl.) JETP Lett. 49, 126 (1990).

    Google Scholar 

  23. Devoret, M. H. et al. Phys. Rev. Lett. 64, 1824 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Girvin, S. M., Glazman, L. I., Jonson, M., Penn, D. R. & Stiles, M. D. Phys. Rev. Lett. 64, 3318 (1990).

    Article  Google Scholar 

  25. Cleland, A. N., Schmidt, J. M. & Clarke, J. Phys. Rev. Lett. 64, 1565 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Kuzmin, L. S., Nazarov, Yu. V., Haviland, D. B., Delsing, P. & Claeson, T. Phys. Rev. Lett. 67, 1161 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Likharev, K. K. IBM J. Res. Dev. 32, 144 (1988).

  28. Averin, D. V. & Likharev, K. K., in Quantum Effects in Small Disordered Systems (eds Altshuler, B. L., Lee, P. A. & Webb, R. A.) (Elsevier, Amsterdam, 1991).

    Google Scholar 

  29. Schön, G. & Zaikin, A. D. Phys. Rep. 198, 237 (1990).

    Article  ADS  Google Scholar 

  30. Single Charge Tunneling (eds Grabert, H. & Devoret, M. H.) (Plenum, New York, 1992).

  31. Single Charge Tunneling spec. Issue Z. Phys. B85, 317–468 (1991).

  32. Single Electron Tunneling and Mesoscopic Devices, Proc. 4th Int. Conf. SQUID '91 (eds Koch, H. & Lübbig, H.) (Springer, Berlin, 1992).

  33. Cleland, A. N., Esteve, D., Urbina, C. & Devoret, M. H. Appl. Phys. Lett. (in the press).

  34. Fraser, D. A. The Physics of Semiconductor Devices (Clarendon, Oxford, 1986).

    Google Scholar 

  35. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect (Wiley, New York, 1982).

    Book  Google Scholar 

  36. Beenakker, C. W. J. Single Charge Tunneling, Ch. 5 (eds Grabert, H. & Devoret, M. H.) (Plenum, New York, 1992).

    Google Scholar 

  37. Wilkins, R., Ben-Jacob, E. & Jaklevic, R. D. Phys. Rev. Lett. 63, 801 (1989).

    Google Scholar 

  38. Schönenberger, C. Europhys. Lett. (in the press).

  39. Nejoh, H. Nature 353, 640 (1991).

    Article  ADS  CAS  Google Scholar 

  40. Pothier, H., Lafarge, P., Urbina, C., Esteve, D. & Devoret, M. H. Physica B169, 573 (1991); Europhys. Lett. 17, 259 (1992).

    Article  Google Scholar 

  41. Geerligs, L. J. et al. Phys. Rev. Lett. 64, 2691 (1990).

    Article  ADS  CAS  Google Scholar 

  42. von Klitzing, K. Rev. mod. Phys. 58, 519 (1986).

    Article  ADS  CAS  Google Scholar 

  43. Williams, E. R., Gosh, R. N. & Martinis, J. M. J. Res. Natn. Inst. Stand Technol. 97, (1992).

  44. Averin, D. V. & Odintsov, A. A. Phys. Lett. A149, 251 (1989).

    Article  Google Scholar 

  45. Averin, D. V., Odintsov, A. A. & Vyshenskii, S. V. J. Appl. Phys. (in the press).

  46. Jensen, H. D. & Martinis, J. M. Phys. Rev. B46 (in the press).

  47. Pothier, H., Lafarge, P., Esteve, D., Urbina, C. & Devoret, M. H. IEEE Trans. Magn. (in the press).

  48. Lafarge, P. et al. C. R. Acad. Sci. Paris 314, 883 (1992).

  49. Aviram, A. & Ratner, M. Chem. Phys. Lett. 29, 277 (1974); Molecular Electronic Devices (ed. Carter, F. L.) (North-Holland, Amsterdam, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devoret, M., Esteve, D. & Urbina, C. Single-electron transfer in metallic nanostructures. Nature 360, 547–553 (1992). https://doi.org/10.1038/360547a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/360547a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing