Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Immuno-isolation of Sec7p-coated transport vesicles from the yeast secretory pathway

Abstract

THE transport of proteins destined for post-endoplasmic reticulum locations in the secretory pathway is mediated by small vesicular carriers1–3. Transport vesicles have been generated in cell-free assays from the yeast Saccharomyces cerevisiae, and mammalian systems4–14. Yeast genes encoding cytosolic components that par-ticipate in vesicular traffic were first identified from the collection of conditional-lethal sec (secretory) mutants15–17. Mutations in the yeast SEC7 gene disrupt protein transport in the secretory pathway at the nonpermissive temperature18. The SEC7 gene product is a phosphoprotein of relative molecular mass 230,000 that functions from the cytoplasmic aspect of intracellular mem-branes19–20. We report that in a yeast cell-free transport assay, the introduction of antibodies to Sec? protein (Sec7p) results in the accumulation of transport vesicles. These vesicles are retrieved with SecTp-specific antibodies by immuno-isolation for bio-chemical and electron microscopic characterization. SecTp on the surface of the accumulated transport vesicles, in combination with previous genetic and biochemical studies18–20, implicate SecTp as part of a (non-clathrin) vesicle coat. This SecTp-containing coat structure is proposed to be essential for vesicle budding at multiple stages in the yeast secretory pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Warren, G. Nature 345, 382–384 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Rothman, J. E. & Orci, L. FASEB J. 4, 1460–1468 (1990).

    Article  CAS  Google Scholar 

  3. Melançon, P., Franzusoff, A. & Howell, K. Trends Cell Biol. 114, 219–229 (1991).

    Article  Google Scholar 

  4. Serafini, T. et al. Nature 349, 215–220 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Salamero, J., Sztul, E. S. & Howell, K. E. Proc. natn. Acad. Sci. U.S.A. 87, 7717–7721 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Tooze, S. & Huttner, W. B. Cell 60, 837–847 (1990).

    Article  CAS  Google Scholar 

  7. deCurtis, I. & Simons, K. Cell 58, 719–727 (1989).

    Article  CAS  Google Scholar 

  8. Balch, W. E. Trends biochem. Sci. 15, 473–477 (1990).

    Article  Google Scholar 

  9. Paulik, M., Nowack, D. D. & Morré, D. J. J. biol. Chem. 263, 17738–17748 (1988).

    CAS  PubMed  Google Scholar 

  10. Lodish, H. F., Kong, N., Hirani, S. & Rasmussen, J. J. Cell Biol. 104, 221–230 (1987).

    Article  CAS  Google Scholar 

  11. Groesch, M. E., Ruohola, H., Bacon, R., Rossi, G. & Ferro-Novick, S. J. Cell Biol. 111, 45–53 (1990).

    Article  CAS  Google Scholar 

  12. Rexach, M., & Schekman, R. J. Cell Biol. 114, 219–229 (1991).

    Article  CAS  Google Scholar 

  13. Baker, D., Wuestehube, L., Schekman, R., Botstein, D. & Segev, N. Proc. natn. Acad. Sci. U.S.A. 87, 355–359 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Segev, N. Science 252, 1553–1556 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Kaiser, C. A. & Schekman, R. Cell 61, 723–733 (1990).

    Article  CAS  Google Scholar 

  16. Newman, A. P. & Ferro-Novick, S. J. Cell Biol. 105, 1587–1594 (1987).

    Article  CAS  Google Scholar 

  17. Novick, P., Field, C. & Schekman, R. Cell 21, 205–215 (1980).

    Article  CAS  Google Scholar 

  18. Franzusoff, A. & Schekman, R. EMB0 J. 8, 2695–2702 (1989).

    Article  CAS  Google Scholar 

  19. Achstetter, T., Franzusoff, A., Field, C. & Schekman, R. J. biol. Chem. 263, 11711–11717 (1988).

    CAS  PubMed  Google Scholar 

  20. Franzusoff, A., Redding, K. R., Crosby, J., Fuller, R. S. & Schekman, R. J. Cell Biol. 112, 27–37 (1991).

    Article  CAS  Google Scholar 

  21. Baker, D., Hicke, L., Rexach, M., Schleyer, M. & Schekman, R. Cell 54, 335–344 (1988).

    Article  CAS  Google Scholar 

  22. Ruohola, H., Kabcenell, A. K. & Ferro-Novick, S. J. Cell Biol. 107, 1465–1476 (1988).

    Article  CAS  Google Scholar 

  23. Wright, R., Basson, M., D'Ari, L. & Rine, J. J. Cell Biol. 107, 101–114 (1988).

    Article  CAS  Google Scholar 

  24. Deshaies, R. J., Sanders, S. L., Feldheim, D. A. & Schekman, R. Nature 349, 806–808 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Malhotra, V., Serafini, T., Orci, L., Shepherd, J. C. & Rothman, J. E. Cell 58, 329–336 (1989).

    Article  CAS  Google Scholar 

  26. Novick, P., Ferro, S. & Schekman, R. Cell 25, 461–469 (1981).

    Article  CAS  Google Scholar 

  27. Howell, K. E., Schmid, R., Ugelstad, J. & Gruenberg, J. Meth. Cell Biol. 31, 265–292 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzusoff, A., Lauz, E. & Howell, K. Immuno-isolation of Sec7p-coated transport vesicles from the yeast secretory pathway. Nature 355, 173–175 (1992). https://doi.org/10.1038/355173a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355173a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing