Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR

Abstract

POSITIVE control of transcription often involves stimulatory protein-protein interactions between regulatory factors and RNA polymerase1. Critical steps in the activation process itself are seldom ascribed to protein–DNA distortions. Activator-induced DNA bending is typically assigned a role in binding-site recognition2, alterations in DNA loop structures3 or optimal positioning of the activator for interaction with polymerase4. Here we present a transcriptional activation mechanism that does not require a signal-induced DNA bend but rather a receptor-induced untwisting of duplex DNA. The allosterically modulated transcription factor MerR is a represser and an Hg(II)-responsive activator of bacterial mercury-resistance genes5–7.Escherichia coliRNA polymerase binds to the MerR–promoter complex but cannot proceed to a transcriptionally active open complex until Hg(II) binds to MerR (ref. 6). Chemical nuclease studies show that the activator form, but not the represser, induces a unique alteration of the helical structure localized at the centre of the DNA-binding site6. Data presented here indicate that this Hg–MerR-induced DNA distortion corresponds to a local underwinding of the spacer region of the promoter by about 33° relative to the MerR–operator complex. The magnitude and the direction of the Hg–MerR-induced change in twist angle are consistent with a positive control mechanism involving reorientation of conserved, but suboptimally phased, promoter elements and are consistent with a role for torsional stress in formation of an open complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ptashne, M. Nature 335, 683–689 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Steitz, T. A. Q. Rev. Biophys. 23, 205–280 (1990).

    Article  CAS  Google Scholar 

  3. Lobell, R. B. & Schleif, R. F. Science 250, 528–532 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Zinkel, S. S. & Crothers, D. M. J. molec. Biol. 219, 201–215 (1991).

    Article  CAS  Google Scholar 

  5. O'Halloran, T. V., Frantz, B., Shin, M. K., Ralston, D. M. & Wright, J. G. Cell 56, 119–129 (1989).

    Article  CAS  Google Scholar 

  6. Frantz, B. & O'Halloran, T. V. Biochemistry 29, 4747–4751 (1990).

    Article  CAS  Google Scholar 

  7. Brown, N. L. et al. Molec. gen. Genet. 202, 143–151 (1986).

    Article  CAS  Google Scholar 

  8. O'Halloran, T. V. & Walsh, C. T. Science 235, 211–214 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Harley, C. B. & Reynolds, R. P. Nucleic Acids Res. 15, 2343–2361 (1987).

    Article  CAS  Google Scholar 

  10. Lund, P. A. & Brown, N. L. Nucleic Acids Res. 17, 5517–5527 (1989).

    Article  CAS  Google Scholar 

  11. Parkhill, J. & Brown, N. L. Nucleic Acids Res. 18, 5157–5162 (1990).

    Article  CAS  Google Scholar 

  12. Heltzel, A., Lee, I. W., Totis, P. A. & Summers, A. O. Biochemistry 29, 9572–9584 (1990).

    Article  CAS  Google Scholar 

  13. Wu, H. M. & Crothers, D. M. Nature 308, 509–513 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Kim, J., Zwieb, C., Wu, C. & Adhya, S. Gene 85, 15–23 (1989).

    Article  CAS  Google Scholar 

  15. Kolb, A. & Buc, H. Nucleic Acids Res. 10, 473–484 (1982).

    Article  CAS  Google Scholar 

  16. Gamper, H. B. & Hearst, J. E. Cell 29, 81–90 (1982).

    Article  CAS  Google Scholar 

  17. Kim, R. & Kim, S.-H. Cold Spring Harb. Symp. quant Biol. 47, 451–454 (1982).

    Article  CAS  Google Scholar 

  18. Kim, R., Modrich, P. & Kim, S.-H. Nucleic Acids Res. 12, 7285–7292 (1984).

    Article  CAS  Google Scholar 

  19. Wang, J. C., Jacobsen, J. H. & Saucier, J.-M. Nucleic Acids Res. 4, 1225–1241 (1977).

    Article  CAS  Google Scholar 

  20. Depew, R. E. & Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 72, 4275–4279 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Cozzarelli, N. R., Boles, T. C. & White, J. H. in DNA Topology and its Biological Effects (eds Cozzarelli, N. R. & Wang, J. C.) 139–184 (Cold Spring Harbor Laboratory Press, New York, 1990).

    Google Scholar 

  22. Amouyal, M. & Buc, H. J. molec. Biol. 195, 795–808 (1987).

    Article  CAS  Google Scholar 

  23. Travers, A. A. Current Opinions struct. Biol. 1, 114–122 (1991).

    Article  CAS  Google Scholar 

  24. Trauera, A. A. & Klug, A. in DNA Topology and its Biological Effects (eds Cozzarelli, N. R. & Wang, J. C.) 57–106 (Cold Spring Harbor Laboratory Press, New York, 1990).

    Google Scholar 

  25. Buc, H. et al. in RNA Polymerase and the Regulation of Transcription (eds Reznikoff, W. S. et al.) 115–125 (Elsevier, New York, 1987).

    Google Scholar 

  26. Boroweic, J. A. & Gralla, J. D. J. molec. Biol. 184, 587–598 (1985).

    Article  Google Scholar 

  27. Ayers, D. G., Auble, D. T. & deHaseth, P. L. J. molec. Biol 207, 749–756 (1989).

    Article  CAS  Google Scholar 

  28. Thompson, J. F. & Landy, A. Nucleic Acids Res. 16, 9687–9705 (1988).

    Article  CAS  Google Scholar 

  29. Watton, S. P. et al. J. Am. chem. Soc. 112, 2824–2826 (1990).

    Article  CAS  Google Scholar 

  30. Helmann, J. D., Ballard, B. T. & Walsh, C. T. Science 247, 946–948 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, A., Chael, M. & O'Halloran, T. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355, 87–89 (1992). https://doi.org/10.1038/355087a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355087a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing