Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly oriented thin films of poly(tetrafluoroethylene) as a substrate for oriented growth of materials

Abstract

THE formation of highly oriented structures such as single crystals, single-domain liquid crystals and systems comprising uniaxially oriented crystallites is important in many applications of thin films and interfaces, ranging from materials reinforcement to molecular electronics. Of the methods that exist for forming such oriented structures, however, few have sufficient generality to make them applicable to materials of differing chemical composition or physical properties. Here we present a simple and surprisingly versatile method1 for orienting a wide variety of crystalline and liquid-crystalline materials, including polymers, monomers and small organic and inorganic molecules. In our technique, a thin, single-crystal-like film of poly(tetrafluoroethylene) (PTFE) is deposited mechanically on a smooth substrate such as glass. Materials grown on this coated surface from solution, melt or vapour phases show a remarkable degree of alignment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wittmann, J. C. & Smith, P. US Patent Applic. No. 361, 129 (1989).

  2. Ultra-High Modulus Polymers (eds Ciferri, A. & Ward, I. M.) (Applied Science, London, 1979).

  3. Blades, H. US Patents No. 3,767,757; 3,869,429; and 3,869,430 (to Du Pont).

  4. Smith, P. & Lemstra, P. J. J. Mater. Sci. 15, 505–514 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Oh, S. Y., Akagi, K. & Shirakawa, H. Synth. Met. 32, 245–252 (1989).

    Article  CAS  Google Scholar 

  6. Gagnon, D. R., Karasz, F. E., Thomas, E. L. & Lenz, R. W. Synth. Met. 20, 85–95 (1987).

    Article  CAS  Google Scholar 

  7. Andreatta, A., Tokito, S., Smith, P. & Heeger, A. J. Molec. Cryst. lip. Cryst. 189, 169–182 (1990).

    CAS  Google Scholar 

  8. Capaccio, G., Gibson, A. G. & Ward, I. M. in Ultra-high Modulus Polymers (eds Ciferri, A. & Ward, I. M.) 70 (Applied Science, London, 1979).

    Google Scholar 

  9. Lovinger, A. J. Science 220, 1115–1121 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Dorset, D. L. J. Electron Microsc. Techn. 7, 35–46 (1987).

    Article  CAS  Google Scholar 

  11. Pashley, D. W. Adv. Phys. 14, 327–352 (1965).

    Article  ADS  CAS  Google Scholar 

  12. Parikh, D. & Phillips, P. J. J. chem. Phys. 83, 1948–1951 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Petermann, J. & Broza, G. J. Mater. Sci. 22, 1108–1112 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Takahashi, T., Teraoka, F. & Tsujimoto, I. J. macromolec. Sci.-Phys. B12, 303–315 (1976).

    Article  ADS  Google Scholar 

  15. Smith, H. I., Geis, M. W., Thompson, C. V. & Atwater, H. A. J. Crystal Growth 63, 527–546 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Cognard, J. Molec. Cryst liq. Cryst 51, 1–74 (1982).

    Google Scholar 

  17. Geary, J. M., Goodby, J. W., Kmetz, A. R. & Patel, J. S. J. appl. Phys. 62, 4100–4108 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Swei, G. S., Lando, J. B., Rickert, S. A. & Mauritz, K. A. in Encyclopedia of Polymer Science and Engineering vol. 6, 209–224 (Wiley, New York, 1986).

    Google Scholar 

  19. Wittmann, J. C. & Lotz, B. Prog. Polym. Sci. 15, 909–948 (1990).

    Article  CAS  Google Scholar 

  20. Pooley, C. M. & Tabor, D. Proc. R. Soc. Lond. A329, 251–274 (1972).

    Article  ADS  CAS  Google Scholar 

  21. Briscoe, B. J. Am. Chem. Soc. Symp. Ser. 287 (ed. Lee, L.-H.) 151–170 (1985).

    CAS  Google Scholar 

  22. Folda, T., Hoffmann, H., Chanzy, H. D. & Smith, P. Nature 333, 55–56 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Smith, P., Lemstra, P. J., Pljpers, J. P. L. & Kiel, A. M. Colloid Polym. Sci. 259, 1070–1080 (1981).

    Article  CAS  Google Scholar 

  24. Andreatta, A., Cao, Y., Chiang, J. C., Heeger, A. J. & Smith, P. Synth. Met. 26, 383–389 (1988).

    Article  CAS  Google Scholar 

  25. Patel, J. S., Lee, S.-D., Baker, G. L. & Shelburn, J. A. III Appl. Phys. Lett. 56, 131–133 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Isoda, S. Polymer. 25, 615–624 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmann, J., Smith, P. Highly oriented thin films of poly(tetrafluoroethylene) as a substrate for oriented growth of materials. Nature 352, 414–417 (1991). https://doi.org/10.1038/352414a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352414a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing