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The plant hormone auxin is central in many aspects of plant development. Previous studies have implicated the ubiquitin-ligase
SCFTIR1 and the AUX/IAA proteins in auxin response. Dominant mutations in several AUX/IAA genes confer pleiotropic auxin-related
phenotypes, whereas recessive mutations affecting the function of SCFTIR1 decrease auxin response. Here we show that SCFTIR1 is
required for AUX/IAA degradation. We demonstrate that SCFTIR1 interacts with AXR2/IAA7 and AXR3/IAA17, and that domain II of
these proteins is necessary and suf®cient for this interaction. Further, auxin stimulates binding of SCFTIR1 to the AUX/IAA proteins,
and their degradation. Because domain II is conserved in nearly all AUX/IAA proteins in Arabidopsis, we propose that auxin
promotes the degradation of this large family of transcriptional regulators, leading to diverse downstream effects.

Plant development requires the coordinated regulation of cell
division, expansion and differentiation. The plant hormone
indole-3-acetic acid (IAA or auxin) is fundamental in regulating
many of these processes.
Genetic studies in Arabidopsis indicate that regulated protein

degradation is required for auxin response. Recessive mutations in
AXR1 and TIR1, both components of the ubiquitin-mediated
proteolytic pathway, result in reduced auxin response1. TIR1
encodes an F-box protein that interacts with the cullin AtCUL1
and a SKP1-like protein (ASK1 or ASK2) to form an SCF ubiquitin
protein ligase (E3). On the basis of these results, we proposed that
SCFTIR1 targets one or more repressors of auxin response for
degradation2,3. AXR1 encodes a subunit of the enzyme that activates
the ubiquitin-like protein RUB1 for conjugation to target proteins4.
One target for RUB1 conjugation is the AtCUL1 subunit of the
SCFTIR1 complex, and evidence suggests that modi®cation of cullins
by RUB1 is important in regulating activity of SCF ubiquitin-
ligases5±8.
Studies of the AUX/IAA family of transcriptional regulators have

also implicated protein degradation in auxin response. The
Arabidopsis thaliana genome contains at least 24 AUX/IAA genes,
many of whichwere identi®ed because of their rapid induction after
auxin treatment9. The AUX/IAA proteins have a relative molecular
mass of 20,000±35,000 (Mr 20K±35K) and share four conserved
domains, designated I±IV. Domains III and IV mediate homo- and
heterodimerization between AUX/IAA proteins and heterodimer-
ization with members of a second large protein family called the
auxin-response factors (ARFs), most of which also contain domains
III and IV10,11. The ARF proteins are transcription factors that bind
to auxin-response elements (AuxRE) located upstream of auxin-
inducible genes11. Overexpression of some AUX/IAA genes was
found to repress transcription of an AuxRE-reporter in transient
transfection assays12. Because the AUX/IAA proteins are not known
to bind DNA, this negative regulation may occur through interac-
tion with ARF transcription factors.
Dominant mutations conferring auxin-related phenotypes have

been isolated in several AUX/IAA genes13±16. These mutations all
occur within the highly conserved core of domain II of each protein.
Domain II has recently been demonstrated to act as a transferable
protein degradation signal when fused to luciferase17. Furthermore,
mutations in domain II equivalent to the dominant mutant alleles

of AXR2/IAA7, AXR3/IAA17 and SHY2/IAA3 restored stability to
the luciferase fusion protein. Consistent with this ®nding, pulse-
chase experiments reveal that the mutant axr3-1 protein has a half-
life about sevenfold greater than its wild-type counterpart18. These
results indicate that rapid turnover of AUX/IAA proteins is essential
for normal auxin response and that the biochemical basis for these
dominant mutations is increased protein stability.
Here we show that both treatment with a proteasome inhibitor

and mutations affecting the SCFTIR1 complex increase stability of
AUX/IAA proteins. Furthermore, we demonstrate that SCFTIR1

physically interacts with AUX/IAA proteins. This interaction is
mediated by domain II of the AUX/IAA proteins and is abolished
by mutations within this motif. Auxin treatment stimulates the
interaction between SCFTIR1 and AUX/IAA proteins and promotes
their degradation. These data indicate that auxin promotes SCFTIR1-
dependent degradation of AUX/IAA proteins. Rapid changes in the
levels of individual members of this large family of proteins are
likely to result in the diverse downstream effects associated with
auxin response.

Analysis of AUX/IAA stability with GUS fusions
To examine AUX/IAA protein stability, we generated transgenic
plants expressing an AXR2±GUS (beta-glucuronidase) fusion pro-
tein under control of the cauli¯ower mosaic virus CaMV 35S
promoter. Despite the presence of the AXR2±GUS transgene, we
detected no, or in a few lines very weak, GUS activity by histo-
chemical staining. The dominant axr2-1 mutation results in an
amino-acid substitution within the domain II motif known to be
important for instability13,17. When plants expressing an axr2-1±
GUS protein were examined, abundant GUS staining was detected
in the nuclei of many cells, and was especially strong in root tips
(Fig. 1a). These plants exhibited several auxin-related growth
phenotypes, suggesting that the GUS fusion proteins retained
AXR2 function (see below).
We employed a similar approach to compare AXR3/IAA17 and

axr3-1 protein levels. The amino-terminal domains I and II of AXR3
(AXR3NT) were fused to GUS and placed under the control of the
soybean heat-shock promoter (HS)19. The resulting AXR3NT±GUS
protein is non-functional but retains the bipartite nuclear localiza-
tion signal spanning domains I and II. Wild-type plants expressing
the HS::AXR3NT±GUS constructs were heat shocked at 37 8C for
2 h and stained for GUS activity 60min after the end of the heat-
shock period. Like the AXR2±GUS proteins, signi®cantly more
staining was detected with the HS::axr3-1NT±GUS construct than§ Present address: CSIRO Plant Industry, GPO Box 1600, Australian Capital Territory 2601, Australia.
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the wild-type derivative (Fig. 1b). For both wild-type and mutant
proteins, staining was primarily nuclear (data not shown). These
results support previous ®ndings suggesting that the biochemical
basis for the phenotypes conferred by dominant AUX/IAA muta-
tions is increased stability of the mutant protein17,18.
We examined the possibility that auxin regulates AUX/IAA

degradation using HS::AXR3NT±GUS transgenic plants. Seedlings
were treated with the synthetic auxin NAA (1-naphthalene acetic
acid) 20min after the end of the heat-shock period and assayed for
GUS activity at succeeding 20-min intervals. Auxin treatment
promoted degradation of AXR3NT±GUS, but had no effect on
axr3-1NT±GUS levels (Fig 1c).
The effect of auxin onAXR3 stability was alsomeasured in a dose-

response assay. Activity of HS::AXR3NT±GUS progressively
decreased as auxin concentration increased over a range of 0±
50mM. In contrast, GUS activities of the HS::axr3-1NT±GUS and
the control HS::GUS reporters were unaffected by auxin treatment
over the time course of this experiment (Fig. 1d). These data
indicate that auxin rapidly destabilizes the AXR3 protein and that
the axr3-1 mutation prevents this auxin-mediated degradation.

Ubiquitin-mediated degradation of AUX/IAA proteins
Because the AXR1 and TIR1 genes encode proteins involved in
ubiquitin-mediated degradation, we tested the possibility that the
ubiquitin-proteasome pathway is involved in AUX/IAA degrada-
tion. Seedlings expressing either the AXR2±GUS or AXR3NT±GUS
proteins were treated with the proteasome inhibitor MG132. Both
fusion proteins were stabilized by MG132 (Fig. 2). Next, we
examined whether MG132 could prevent the auxin-induced degra-
dation of AXR3NT±GUS. Heat-shocked HS::AXR3NT±GUS seed-
lings were treated with MG132 for 60min, followed by a 60-min
treatment with 5mM auxin. Histochemical staining revealed that
preincubation with proteasome inhibitor largely blocked the auxin-
mediated degradation of AXR3NT±GUS (Fig. 2b). In contrast,
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Figure 1 Analysis of AUX/IAA±GUS fusion constructs. a, Seven-day-old seedlings stained

for GUS activity. Right, nuclear localization of axr2-1±GUS in root meristem cells.

b, Seedlings were heat shocked for 2 h and stained for GUS activity 60min after the end of

the heat induction. c, Auxin destabilization of AXR3NT±GUS. Relative activity is expressed

as percentage of the 20-min level. Error bars, s.e.m.; n = 6. d, HS::GUS, HS::AXR3NT±

GUS, and HS::axr3-1NT±GUS seedlings were treated with NAA 20min after the end of the

heat-shock period. GUS activity was measured ¯uorometrically 50min after NAA addition

Error bars, s.e.m.; n = 6.
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Figure 2 The proteasome inhibitor MG132 increases AUX/IAA protein stability. a, Seven-

day-old seedlings were treated with 10mM MG132 for 2 h and stained for GUS activity.

b, Nine-day-old seedlings were heat shocked for 2 h. Where indicated, seedlings were

treated with 10mM MG132 after 1 h, and 5mM 2,4-D was added at the end of the heat-

shock period. Sixty minutes later, seedlings were stained overnight to detect GUS activity.
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MG132 treatment had no observable effect on axr3-1NT±GUS
levels over the course of the experiment (data not shown).
The effects of axr1 and tir1mutations on AUX/IAA stability were

investigated using the 35S::AXR2±GUS and HS::AXR3NT±GUS
reporters. tir1-1 mutants had higher AXR2±GUS levels compared
with the wild type (Fig. 3a). Although the effect of the tir1-1
mutation on AXR2±GUS levels was relatively modest, the
35S::AXR2±GUS construct conferred auxin-related defects such as
leaf curling and reduced apical dominance in tir1-1 plants. The
same construct had no effect on morphology in the wild-type
background. The tir1-1[35S::AXR2±GUS] phenotype was similar,
although less severe than the phenotype of wild-type plants expres-
sing the stabilized axr2-1±GUS construct, suggesting that the tir1-1
mutation results in increased AXR2 stability (Fig. 3b).
Expression of the 35S::AXR2±GUS protein in axr1-3 plants

resulted in dramatic changes in development. Most axr1-
3[35S::AXR2±GUS] transformants developed a single cotyledon
and lacked a root meristem (Fig. 3b). Less severe transformants had
fused cotyledons and a rudimentary root. These seedlings displayed
greater AXR2±GUS staining compared with wild-type controls
(Fig. 3a). All of the recovered axr1-3[35S-AXR2±GUS] transfor-
mants (.100) arrested and died before or shortly after generating
the ®rst pair of true leaves.
HS::AXR3NT±GUS levels were also elevated in tir1 and axr1

mutants (Fig. 3c). To examine more precisely the effects of the axr1-
12 and tir1-1 mutations, AXR3NT±GUS levels were measured at

20-min intervals after the end of the heat-shock period. Whereas
AXR3NT±GUS levels decreased rapidly in wild-type seedlings,
GUS activity remained high in both axr1-12 and tir1-1 seedlings
(Fig. 3d). AXR3NT±GUS levels were signi®cantly higher in axr1-12
than in tir1-1 seedlings. This is consistent with the more severe
auxin response defect exhibited by axr1-12 plants compared with
tir1-1 plants (Fig. 3c and data not shown).
To con®rm that the GUS fusion proteins accurately re¯ected

protein stability, polyclonal antiserumwas raised against AXR2 and
used to examine protein levels. Although the antiserum detected
recombinant AXR2 from Escherichia coli extracts, we were unable to
detect AXR2 clearly in plant extracts on protein blots. As an
alternative approach, [35S]-methionine/cysteine was used to meta-
bolically label seedling proteins. The AXR2 antiserum immunopre-
cipitated a 29K protein that co-migrated with the recombinant
AXR2 protein (Fig. 3e). When immunoprecipitations were per-
formed using extracts prepared from plants expressing an axr2-1±
GFP (green ¯uorescent protein) fusion protein, an additional 59K
species immunoprecipitated, suggesting that the antiserum does
indeed recognize the AXR2 protein (Fig. 3e). Substantially more
AXR2 proteinwas detected in axr2-1 plants than in wild-type plants
(Fig. 3e). Also consistent with the reporter analysis, more AXR2
proteinwas immunoprecipitated from axr1-12 seedlings than in the
wild type. In pulse-chase experiments (Fig. 3f), AXR2 exhibited a
half-life of 10.86 1.1min in wild type compared with 286 3.9min
in axr1-12. These ®ndings validate the results obtained with the
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GUS reporters and suggest that AXR2 and AXR3 are targeted for
ubiquitin-mediated proteolysis by the SCFTIR1 ubiquitin-ligase.

AUX/IAA proteins interact with SCFTIR1

Our results suggest that AUX/IAA protein turnover is dependent on
SCFTIR1. To examine whether SCFTIR1 physically interacts with AUX/
IAA proteins, the AXR2 antibody was used in immunoprecipitation
experiments with extracts prepared from seedlings expressing the
c-myc epitope-tagged TIR1 derivative. TIR1±Myc was readily
detected in anti-AXR2 immunoprecipitates but was absent from
control precipitations using the AXR2 pre-immune serum (Fig. 4a).
We explored the interaction between SCFTIR1 and the AUX/IAA

proteins further using in vitro pull-down assays. Recombinant
glutathione S-transferase (GST)±AXR2 was synthesized in
Escherichia coli and puri®ed with the GST tag. Puri®ed protein
was incubated with crude lysate prepared from Arabidopsis seed-
lings, repuri®ed, and immunoblotted with c-myc, AtCUL1 and
ASK2 antibodies. TIR1±Myc and AtCUL1 both co-puri®ed with
the GST±AXR2 fusion protein but were absent in control pull-
down assays using GST alone (Fig. 4b, outer lanes). The Skp1-like
proteins ASK1 and ASK2 were also present in GST±AXR2 pull-
down assays. Because the ASK2 antibody cross-reacts with the

co-migrating GST protein, we could not con®rm that ASK1 and
ASK2 were missing from the GST control.
We examined the effect of the axr2-1 mutation on interaction

with SCFTIR1 using a GST±axr2-1 mutant derivative. SCFTIR1 did
not co-purify with the mutant protein, indicating that the single-
base-pair axr2-1 mutation prevents the protein from interacting
with the SCF complex (Fig. 4b, centre lane).
To determine whether SCFTIR1 interacts with additional AUX/

IAA proteins, we tested GST±AXR3 in pull-down assays. Similar to
the results obtained with AXR2, GST±AXR3 co-puri®ed with TIR1
protein and the axr3-1 mutation substantially disrupted this inter-
action (Fig. 4c).
Because the axr2-1 and axr3-1mutations disrupt interactionwith

SCFTIR1, we tested whether domain II functions as a TIR1 interac-
tion domain. A truncated derivative of the GST±AXR2 fusion
protein containing only domains I and II was capable of interacting
with TIR1 in a pull-down assay. Similarly, TIR1 was able to interact,
albeit at a reduced level, with a GST±AXR2 fusion protein contain-
ing only domain II (AXR271±100). In contrast, when a short deletion
was introduced into the highly conserved core of domain II, this
mutant derivative of AXR2 (AXR2D86±88) interacted very weakly
with TIR1 (Fig. 4d). These data demonstrate that domain II is both
necessary and suf®cient to bind SCFTIR1.
Because auxin promoted degradation of the AXR3±GUS fusion

protein (Fig. 1), we examined the possibility that auxin regulates the
interaction between AUX/IAA proteins and SCFTIR1. We performed
GST pull-down assays with AXR2 and AXR3 fusion proteins using
crude Arabidopsis extracts prepared from seedlings treated with the
synthetic auxin 2,4-D (2,4-dichlorophenoxy acetic acid) before
protein extraction. Pull-down assays with extracts prepared from
auxin-treated plants yielded more TIR1±Myc protein than control
assays using untreated extracts. This increase was apparent after
treatments as short as 5min, increased until at least 60min, and
declined by 240min (Fig. 5a; top, middle). Western blot analysis
con®rmed that this increase was not due to an increase in TIR1±
Myc abundance in the extracts prepared from auxin-treated plants
(Fig. 5a; bottom).
Applied auxin also promoted the SCFTIR1±AUX/IAA interaction

in a dose-dependent manner (Fig. 5b). Auxin treatment enhanced
the SCFTIR1±AXR2/AXR3 interaction at concentrations as low as
0.5mM. This dose-response relationship correlates well with the
effects of increasing concentrations of auxin on AXR3NT±GUS
stability.

Discussion
Previous genetic and biochemical studies implicated SCFTIR1 as a
positive regulator of auxin response in Arabidopsis2. We have
proposed that SCFTIR1 promotes auxin response by targeting one
or more negative regulators of the pathway for ubiquitin-mediated
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degradation1. In this report we demonstrate that the AUX/IAA
proteins are targeted for degradation by SCFTIR1 in response to
auxin. Stabilization of the AUX/IAA proteins, either by recessive
mutations that affect the SCF or by dominant mutations in the
AUX/IAA genes, causes dramatic defects in auxin response and
morphology. These results provide a mechanistic link between the
genetically de®ned AXR1±TIR1 pathway and two families of tran-
scriptional regulators, the AUX/IAA and ARF proteins.
We suggest that AUX/IAA proteins are substrates of SCFTIR1 and

the domain II of AUX/IAA proteins functions as a signal that targets
these proteins for degradation17,18. Our reporter and immunological
®ndings support this hypothesis because the axr2-1 and axr3-1
mutations resulted in increased protein stability. In addition,
mutations in TIR1 or AXR1, or treatment with the proteasome
inhibitor MG132, caused increased AXR2 and AXR3 stability
suggesting that SCFTIR1 ubiquitinates these proteins, marking
them for degradation by the 26S proteasome.
Our data suggest that domain II destabilizes AXR2 and AXR3 by

targeting them to SCFTIR1. Auxin causes reduced protein stability by
promoting this interaction whereas the dominant AUX/IAA muta-
tions confer increased protein stability by preventing the interaction
between AUX/IAA proteins and the SCF. Although we have demon-
strated SCFTIR1±AUX/IAA interaction in crude extracts, we were
unable to detect an interaction between recombinant AXR2 or
AXR3 and immunopuri®ed SCFTIR1. This indicates that the plant
extract provides a factor that facilitates the interaction. It is possible
that SCFTIR1±AUX/IAA binding is regulated by phosphorylation, as
several yeast and mammalian SCF substrates must be phosphory-
lated to interact with their cognate SCFs20. Indeed, a MAP kinase
activity was recently identi®ed that is rapidly and transiently
induced by auxin21. However, domain II, shown here to be necessary
and suf®cient for SCFTIR1 recognition, does not contain any con-
served sites of phosphorylation22. It is possible that an additional
protein, serving as a bridge between the SCF and substrate, is
phosphorylated in response to auxin. Alternatively, domain II
may be subject to a different type of post-translational modi®cation.
The identi®cation of the modi®cation and/or cofactor that is
required for SCFTIR1 binding will provide important insight into
the upstream events in the auxin-response pathway.
Our understanding of AUX/IAA protein function is based largely

on genetic studies. The phenotypes of the gain-of-function axr2,
axr3, shy2 and iaa28mutations illustrate the consequences of failure
to degrade individual members of the family. In general, accumula-
tion of each protein results in decreased auxin response. For
example, the axr2-1 mutant is de®cient in auxin induction of all
members of the AUX/IAA gene family, indicating that stabilized
AXR2 represses transcription of these genes9. In addition, transfec-
tion experiments demonstrate that some AUX/IAA proteins repress
auxin-dependent gene expression12. However, it is important to
note that some aspects of the axr3-1 phenotype are more consistent
with auxin hypersensitivity, suggesting that individual members of
the family may have positive effects on auxin response.
Although the mechanism by which AUX/IAA proteins affect

auxin response is unknown, one simple possibility is that they
prevent the formation of ARF protein dimers. The ARF proteins
seem to bind palindromic auxin response elements and activate
transcription more ef®ciently as dimers23,24. Because AUX/IAA
proteins can heterodimerize with ARFs, they may act by preventing
formation of active ARF dimers11. In the case of ARFs that activate
transcription, this will result in repression of transcription. For
those ARFs that seem to act as repressors (for example, ARF1),
interaction with an AUX/IAA protein could have a positive effect on
transcription of target genes. This view is strongly supported by the
effects of overexpression of the AXR2±GUS fusion protein in axr1-3
plants. axr1-3[AXR2±GUS] transformants developed with single or
fused cotyledons strikingly similar to loss-of-function mutants of
the ARF transcription factor MP (ref. 25). Thus it is likely that

increased AXR2±GUS levels in axr1-3 plants repress the ability of
MP to regulate auxin-responsive genes.
The tir1 and axr1 mutations probably have a global effect on

AUX/IAA stability. Domain II is conserved in 24 of the 29 members
of the family, so it is likely that most of these proteins are degraded
in an auxin-dependent manner. In this context, it is important to
note that the Arabidopsis genome encodes several proteins with high
homology to TIR1 as well as one AXR1-like protein. These related
gene products are likely to be at least partially redundant with TIR1
and AXR1. This would explain the relatively modest effect of the
tir1-1 mutation on AUX/IAA stability and auxin response in
general.
On the basis of the results presented in this study, we propose the

following model for auxin response (Fig. 6). Basal levels of AUX/
IAA proteins repress the auxin-response pathway. Auxin derepresses
the pathway by promoting AUX/IAA binding to SCFTIR1 and related
SCF complexes, leading to their degradation. SCFTIR1 function
requires AXR1-dependent RUB1 modi®cation of the AtCUL1
subunit of the SCF. AUX/IAA proteolysis results in a transient
derepression of the pathway until new AUX/IAA proteins can be
synthesized and restore repression. According to this model, auxin-
induced expression of the AUX/IAA genes is a negative-feedback
loop that ensures tight regulation of the response similar to the
rapid NF-kB activation of its inhibitor, IkB26. Auxin-induced
destabilization of the AUX/IAA proteins would permit the forma-
tion of ARF±ARF dimers and hence a higher level of transcription of
auxin-regulated genes. Auxin is known to elicit a diverse array of
responses during the plant's life cycle. The key to this complexity
may lie in the differences in expression of AUX/IAA family mem-
bers, as well as differences in degradation kinetics. Indeed, the
limited data available suggest striking differences in the instability of
AUX/IAA proteins18,27. Consistent with this possibility, we ®nd that
AXR2 interacts with SCFTIR1 much more ef®ciently than AXR3
(W.M.G. and M.E., unpublished data), which may account for the
shorter half-life of the AXR2 protein (Fig. 3f)18. Extrapolated to the
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Figure 6 Model for auxin response. AUX/IAA proteins repress the auxin-response

pathway by negatively regulating ARF transcription factors. Auxin promotes the

ubiquitination of AUX/IAA proteins by targeting them to the SCFTIR1 ubiquitin-ligase. The

subsequent degradation of AUX/IAA proteins results in activation of ARF and derepression

of the auxin-response pathway. Because AUX/IAA genes themselves are rapidly induced

by auxin, a negative-feedback loop exists with the newly synthesized AUX/IAA proteins

restoring repression upon the pathway. Although the mechanism of AUX/IAA action is

unclear, one possible mechanism is by preventing the formation of ARF±ARF dimers.
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entire family, this would lead to considerable temporal variation in
the relative abundance of individual AUX/IAA proteins in response
to an auxin pulse. Such dynamics may account for the diversity of
auxin responses observed in the plant. M

Methods

Plant material

All lines employed in this study were in the Columbia ecotype. Seedlings were grown
under sterile conditions on vertically oriented ATS plates28. Seedlings used for protein
extractions were grown for 5±7 d in liquid ATS media.

Reporter constructs

We fused the 400-base pair (bp) fragment of the soybean heat-shock promoter HS6871
(ref. 19) N-terminally to GUS (HS::GUS), domains I and II of AXR3 and GUS (-
HS::AXR3NT±GUS), and domains I and II of axr3-1 and GUS (HS::axr3-1NT±GUS)
using the vector pB101.3 (Clontech). The AXR2 coding sequence was cloned into the
BamHI site of pBI121 (Clontech).

Heat induction and GUS assays

Seedlings were submerged in liquid ATS and heat shocked for 2 h at 37 8C. Plants were
sampled at 20, 40, 60 and 80min thereafter and stored in liquid nitrogen until protein
extraction, or in the case of histochemical reactions, assayed immediately. Auxin treat-
ments were performed by adding NAA 20min after the end of the heat-shock period. GUS
activity was measured as previously described29. Fluorometric assays were performed by
incubating sample extracts in 2mM MUG (4-methylumbelliferyl-b-D-glucoronide),
50mM KPO4 (pH 7.0), 0.1% Sarkosyl (BDH), 0.1% Triton X-100, 10mM b-mercap-
toethanol and 10mM EDTA for 16 h followed by analysis with a Dynex MFX microtitre
plate ¯uorometer. Extracts were prepared from ten seedlings and data were normalized
against total protein levels.

Antibodies

The AXR2 coding sequence was cloned in-frame into the BamHI site of the GST fusion
vector pGEX-2T and introduced into E. coli strain MC1061. Stationary phase cells were
diluted tenfold and grown for 1 h at 30 8C before induction with 0.1mM IPTG. Cells were
collected after 4 h of growth, resuspended in PBS buffer with 0.5% Triton X-100, and lysed
by sonication. The GST±AXR2 fusion protein was puri®ed and subjected to SDS±PAGE,
excised from the gel and injected into a rabbit to generate anti-AXR2 antisera (Cocalico
Biologicals). Crude antiserum was af®nity puri®ed against nitrocellulose-bound GST±
AXR2 fusion protein30. Anti-c-mycmonoclonal antibody was purchased from BabCo. The
anti-ASK2 and anti-AtCUL1 polyclonal antibodies have been previously described2.

Immunoprecipitations and pull-down assays

Immunoprecipitations were performed as previously described2. For GST±AXR2 and
GST±AXR3 pull-down assays, 4mg of puri®ed fusion protein was added to 2.5mg of
crude Arabidopsis extract prepared from 7-day-old seedlings. Extracts were prepared by
homogenizing seedlings in Buffer C (ref. 2) supplemented with 1mM dithiothreitol,
10mM MG132, 10mM b-glycerolphosphate, 1mM NaF and 1mM orthovanadate. The
resulting homogenate was cleared by microcentrifugation for 15min. Where indicated,
seedlings were treated with 2,4-D before extraction. Following addition of the
glutathione±agarose-bound GST fusion protein, extracts were incubated at 4 8C with
gentle agitation for 3 h. Glutathione beads were collected by brief centrifugation, washed
three times in the above buffer, resuspended in SDS±PAGE sample buffer and subjected to
SDS±PAGE electrophoresis and immunoblotting.

Metabolic labelling

Seven-day-old seedlings were transferred to 4ml of ATS medium containing 200mCi
35S-Trans label (ICN) and grown for 3.5 h. Labelled seedlings were washed and proteins
extracted immediately or after a 30-min chase in medium containing 1mM methionine/
cysteine and 100mgml-1 cycloheximide. AXR2 was immunoprecipitated with af®nity-
puri®ed anti-AXR2 antibody as described above. AXR2 half-life (t1/2) was calculated using
the formula t1/2 = 0.693t/ln(N0/Nx), where t is time in minutes. N0 and Nx equal the
amounts of AXR2 at t = 0 and t = 30min, respectively. Values presented are the mean of
three independent experiments (6 s.d.)
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