Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Water conduction through the hydrophobic channel of a carbon nanotube

Abstract

Confinement of matter on the nanometre scale can induce phase transitions not seen in bulk systems1. In the case of water, so-called drying transitions occur on this scale2,3,4,5 as a result of strong hydrogen-bonding between water molecules, which can cause the liquid to recede from nonpolar surfaces to form a vapour layer separating the bulk phase from the surface6. Here we report molecular dynamics simulations showing spontaneous and continuous filling of a nonpolar carbon nanotube with a one-dimensionally ordered chain of water molecules. Although the molecules forming the chain are in chemical and thermal equilibrium with the surrounding bath, we observe pulse-like transmission of water through the nanotube. These transmission bursts result from the tight hydrogen-bonding network inside the tube, which ensures that density fluctuations in the surrounding bath lead to concerted and rapid motion along the tube axis7,8,9. We also find that a minute reduction in the attraction between the tube wall and water dramatically affects pore hydration, leading to sharp, two-state transitions between empty and filled states on a nanosecond timescale. These observations suggest that carbon nanotubes, with their rigid nonpolar structures10,11, might be exploited as unique molecular channels for water and protons, with the channel occupancy and conductivity tunable by changes in the local channel polarity and solvent conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Water occupancy.
Figure 2: Energetics and structure of nanotube water.
Figure 3: Water binding energies.
Figure 4: Flow of water through the nanotube.
Figure 5: Kinetics of emptying and filling transitions.

Similar content being viewed by others

References

  1. Gelb, L. D., Gubbins, K. E., Radhakrishnan, R. & Sliwinska-Bartkowiak, M. Phase separation in confined systems. Rep. Prog. Phys. 62, 1573–1659 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Lum, K., Chandler, D. & Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999).

    Article  CAS  Google Scholar 

  3. Wallqvist, A. & Berne, B. J. Computer simulation of hydrophobic hydration forces on stacked plates at short range. J. Phys. Chem. 99, 2893–2899 (1995).

    Article  CAS  Google Scholar 

  4. Lum, K. & Luzar, A. Pathway to surface-induced phase transition of a confined fluid. Phys. Rev. E 56, R6283–R6286 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Bolhuis, P. G. & Chandler, D. Transition path sampling of cavitation between molecular scale solvophobic surfaces. J. Chem. Phys. 113, 8154–8160 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Stillinger, F. H. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solut. Chem. 2, 141–158 (1973).

    Article  CAS  Google Scholar 

  7. MacKay, D. H. J. & Wilson, K. R. Possible allosteric significance of water structures in proteins. J. Biomol. Struct. Dyn. 4, 491–500 (1986).

    Article  CAS  Google Scholar 

  8. Lynden-Bell, R. M. & Rasaiah, J. C. Mobility and solvation of ions in channels. J. Chem. Phys. 105, 9266–9280 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Sansom, M. S. P., Shrivastava, I. H., Ranatunga, K. M. & Smith, G. R. Simulations of ion channels—watching ions and water move. Trends Biochem. Sci. 25, 368–374 (2000).

    Article  CAS  Google Scholar 

  10. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Ajayan, P. M. & Iijima, S. Smallest carbon nanotube. Nature 358, 23 (1992).

    Article  ADS  Google Scholar 

  12. Liu, J. et al. Fullerene pipes. Science 280, 1253–1256 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Zahab, A., Spina, L., Poncharal, P. & Marlièe, C. Water-vapor effect on the electrical conductivity of a single walled carbon nanotube mat. Phys. Rev. B 62, 10000–10003 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Wilson, M. & Madden, P. A. Growth of ionic crystals in carbon nanotubes. J. Am. Chem. Soc. 123, 2101–2102 (2001).

    Article  CAS  Google Scholar 

  15. Luzar, A. & Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 379, 55–57 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Pomès, R. & Roux, B. Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. Biophys. J. 75, 33–40 (1998).

    Article  ADS  Google Scholar 

  17. Zeidel, M. L., Ambudkar, S. V., Smith, B. L. & Agre, P. Reconstitution of functional water channels in liposomes containing purified red-cell CHIP28 protein. Biochemistry 31, 7436–7440 (1992).

    Article  CAS  Google Scholar 

  18. Sakmann, B., Patlak, J. & Neher, E. Single acetylcholine-activated channels show burst kinetics in presence of desensitizing concentrations of agonist. Nature 286, 71–73 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Zhong, Q. F., Jiang, Q., Moore, P. B., Newns, D. M. & Klein, M. L. Molecular dynamics simulation of a synthetic ion channel. Biophys. J. 74, 3–10 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Walqvist, A., Gallicchio, E. & Levy, R. M. A model for studying drying at hydrophobic interfaces: Structural and thermodynamic properties. J. Phys. Chem. B 105, 6745–6753 (2001).

    Article  Google Scholar 

  21. Beckstein, O., Biggin, P. C. & Sansom, M. S. P. A hydrophobic gating mechanism for nanopores. J. Phys. Chem. B (in the press).

  22. Wikström, M. Proton translocation by bacteriorhodopsin and heme-copper oxidases. Curr. Opin. Struct. Biol. 8, 480–488 (1998).

    Article  Google Scholar 

  23. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Nola, A. D. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Cornell, W. D. et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).

    Article  CAS  Google Scholar 

  27. Bennett, C. H. Efficient estimation of free energy differences from Monte Carlo data. J. Comput. Phys. 22, 245–268 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  28. Hummer, G., Garde, S., García, A. E., Pohorille, A. & Pratt, L. R. An information theory model of hydrophobic interactions. Proc. Natl Acad. Sci. USA 93, 8951–8955 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

G.H. thanks S. Garde, L. R. Pratt, A. E. García and A. Szabo for discussions. J.C.R. and J.P.N. were supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hummer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hummer, G., Rasaiah, J. & Noworyta, J. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001). https://doi.org/10.1038/35102535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102535

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing