Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges

Abstract

Framework cavities are the largest but least explored coral reef habitat1. Previous dive studies of caverns, spaces below plate corals, rubble and artificial cavities1,2,3 suggest that cavity-dwelling (coelobite) filter-feeders are important in the trophodynamics of reefs2,4,5. Quantitative community data are lacking, however, as the bulk of the narrow crevices interlacing the reef framework are inaccessible to conventional analysis methods6. Here we have developed endoscopic techniques to explore Red Sea framework crevices up to 4 m into the carbonate rock, revealing a large internal surface (2.5–7.4 m2 per projected m2 reef) dominated by encrusting filter-feeders. Sponges alone provided up to 60% of coelobite cover, outweighing epi-reefal filter-feeder biomass by two orders of magnitude. Coelobite community filtration removed more than 60% of the phytoplankton in the course of its less than 5-minute passage through the crevices, corresponding to an uptake of roughly 0.9 g carbon m-2 d-1. Mineralization of the largely allochthonous organic material is a principal source of nutrients supporting coral and algal growth. The supply of new material by coelobites may provide a key to understanding the ‘coral reef paradox’—a rich ecosystem thriving in nutrient-poor water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Physical dimensions of coral reef crevices.
Figure 3: Endoscopic techniques for the study of crevice dimensions and coelobite communities.
Figure 4: Small-scale distribution of coelobite sponges (a), Chla (b), Chla:phaeopigments (c) and oxygen (d) in Red Sea coral reef framework crevices, shown as composites of 25 (a) and 15 (bd) surveys conducted within the study area (Fig. 1).

Similar content being viewed by others

References

  1. Ginsburg, R. N. in Perspectives on Coral Reefs (ed. Barnes, D. J.) 148–153 (Australian Institute of Marine Science, Townsville, 1983).

    Google Scholar 

  2. Buss, L. W. & Jackson, J. B. C. Planktonic food availability and suspension-feeder abundance: evidence of in situ depletion. J. Exp. Mar. Biol. Ecol. 49, 151–161 (1981).

    Article  Google Scholar 

  3. Kobluk, D. R. Cryptic faunas in reefs: ecology and geologic importance. Palaios 3, 379–390 (1988).

    Article  ADS  Google Scholar 

  4. Gast, G. J., Wiegmann, S., Wieringa, E., van Duyl, F. C. & Bak, R. P. M. Bacteria in coral reef water types: removal of cells, stimulation of growth and mineralization. Mar. Ecol. Prog. Ser. 167, 37–45 (1998).

    Article  ADS  Google Scholar 

  5. Richter, C. & Wunsch, M. Cavity-dwelling suspension feeders in coral reefs - a new link in reef trophodynamics. Mar. Ecol. Prog. Ser. 188, 105–116 (1999).

    Article  CAS  ADS  Google Scholar 

  6. Wunsch, M. & Richter, C. The CaveCam—an endoscopic underwater videosystem for the exploration of cryptic habitats. Mar. Ecol. Prog. Ser. 169, 277–282 (1998).

    Article  ADS  Google Scholar 

  7. Jackson, J. B. C., Goreau, T. F. & Hartman, W. D. Recent brachiopod-coralline sponge communities and their paleoecological significance. Science 173, 623–625 (1971).

    Article  CAS  ADS  Google Scholar 

  8. Mergner, H. in Proc. Symp. Coastal Marine Environ. Red Sea, Gulf of Aden and Tropical Western Indian Ocean 39–76 (ALECSO Red Sea and Gulf of Aden Environmental Programme, Jeddah (Saudi Arabia), Khartoum, Sudan, 1980).

    Google Scholar 

  9. Mergner, H. & Schuhmacher, H. in Proc. 5th Int. Coral Reef Symp. Vol. 6 (eds Gabrie, C. & Harmelin-Vivien, M.) 243–248 (Antenne Mus., EPHE, Moorea, 1985).

    Google Scholar 

  10. Yahel, G. et al. Phytoplankton distribution and grazing near coral reefs. Limnol. Oceanogr. 43, 551–563 (1998).

    Article  ADS  Google Scholar 

  11. Erez, J. in Coral Reefs (ed. Dubinsky, Z.) 411–418 (Elsevier Science, New York, 1990).

    Google Scholar 

  12. Pawlik, J. R. Coral reef sponges: Do predatory fishes affect their distribution? Limnol. Oceanogr. 43, 1396–1399 (1998).

    Article  ADS  Google Scholar 

  13. Wulff, J. L. Parrotfish predation on cryptic sponges of Caribbean coral reefs. Mar. Biol. 129, 41–52 (1997).

    Article  Google Scholar 

  14. Vogel, S. Life in Moving Fluids—the Physical Biology of Flow 1–467 (Princeton Univ. Press, Princeton, 1994).

    Google Scholar 

  15. D'Elia, C. F. in Concepts of Ecosystem Ecology (eds Pomeroy, L. R. & Alberts, J. J.) 195–230 (Springer, New York, 1988).

    Book  Google Scholar 

  16. Sorokin, Y. I. Coral Reef Ecology (Springer, Berlin, 1995).

    Google Scholar 

  17. Pile, A. J., Patterson, M. R., Savarese, M., Chernykh, V. I. & Fialkov, V. A. Trophic effects of sponge feeding within Lake Baikal's littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnol. Oceanogr. 42, 178–184 (1997).

    Article  CAS  ADS  Google Scholar 

  18. Reiswig, H. M. Particle feeding in natural populations of three marine demosponges. Biol. Bull. 141, 568–591 (1971).

    Article  Google Scholar 

  19. Ferrier-Pagès, C. & Gattuso, J.-P. Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan). Microb. Ecol. 35, 46–57 (1998).

    Article  Google Scholar 

  20. Andrews, J. C. & Müller, H. Space–time variability of nutrients in a lagoonal patch reef. Limnol. Oceanogr. 28, 215–227 (1983).

    Article  CAS  ADS  Google Scholar 

  21. Tribble, G. W., Sansone, F. J., Li, Y.-H., Smith, S. V. & Buddemeier, R. W. in Proc. 6th Int. Coral Reef Symp. (eds Choat, J. H. et al.) 577–582 (Townsville, 1988).

    Google Scholar 

  22. Atkinson, M. J. & Smith, S. V. C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28, 568–574 (1983).

    Article  CAS  ADS  Google Scholar 

  23. Rougérie, F. Nature et fonctionnement des atolls des Tuamotu (Polynésie Française). Oceanol. Acta 18, 61–78 (1995).

    Google Scholar 

  24. Shashar, N., Feldstein, T., Cohen, Y. & Loya, Y. Nitrogen fixation (acetylene reduction) on a coral reef. Coral Reefs 13, 171–174 (1994).

    Article  ADS  Google Scholar 

  25. Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).

    Article  CAS  ADS  Google Scholar 

  26. Ayukai, T. Retention of phytoplankton and planktonic microbes on coral reefs within the Great Barrier Reef, Australia. Coral Reefs 14, 141–147 (1995).

    Article  ADS  Google Scholar 

  27. Glynn, P. W. Ecology of a Caribbean coral reef, the Porites reef flat biotope. Part II. Plankton community with evidence for depletion. Mar. Biol. 22, 1–22 (1973).

    Article  Google Scholar 

  28. Darwin, C. The Structure and Distribution of Coral Reefs (Smith, Elder & Company, London, 1842).

    Google Scholar 

  29. Jokiel, P. L. & Morrissey, J. I. Water motion on coral reefs: evaluation of the ‘clod card’ technique. Mar. Ecol. Prog. Ser. 93, 175–181 (1993).

    Article  ADS  Google Scholar 

  30. Parsons, T. R., Maita, Y. & Lalli, C. M. A Manual of Chemical and Biological Methods for Seawater Analysis (Pergamon, Oxford, 1984).

    Google Scholar 

Download references

Acknowledgements

We thank G. Hempel and the participants of the Red Sea Programme for support; the Egyptian, Israeli and Jordanian authorities for sampling permission; A. Abu-Hilal, the staff of the Aqaba Marine Science Station, G. Yahel, R. Yahel, B. Munkes and E. Saadalla for field and laboratory support; U. Diez, I. and J. Zainer for assistance; K. Fabricius, A. Genin, B. Lazar and G. Yahel for discussions; R. van Soest for sponge determinations; and V. Ittekkot and M. Huettel for improving the manuscript. This study was funded by the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, C., Wunsch, M., Rasheed, M. et al. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001). https://doi.org/10.1038/35099547

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35099547

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing