Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Markers in vertebrate neurogenesis

Abstract

Embryologists have long used morphological characteristics, and more recently marker genes, to identify neural tissue and to test the neural-inducing activity of specific cell populations and signalling molecules. These markers are also used to assess the function(s) of neural genes themselves. Progression from neural induction to terminal differentiation of neurons is a multistep process, and each step involves the activation and/or repression of genes that can be used as molecular markers for these different events. Here we briefly review these key steps in neurogenesis within the vertebrate central nervous system, and evaluate the markers used to define them. We emphasize the importance of cellular context and an understanding of gene function for interpreting the significance of marker genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of vertebrate neurogenesis.
Figure 2: Specification of neuronal subtype identity in the mouse/chick spinal cord.
Figure 3: Enhancer elements drive gene expression in specific domains.

Similar content being viewed by others

References

  1. Spemann, H. & Mangold, H. Uber Induktion von Embryoanlagen durch Implantation artfremder Organisatoren. Wilhelm Roux Arch. Entwicklungsmech. Organ. 100, 599–638 (1924).

    Google Scholar 

  2. Waddington, C. H. & Schmidt, G. A. Induction by heterplastic grafts of the primitive streak in birds. Wilhelm Roux Arch. Entwicklungsmech. Organ. 128, 522–563 (1933).

    Article  CAS  Google Scholar 

  3. Beddington, R. S. P. Induction of a second neural axis by the mouse node. Development 120, 613–620 (1994).

    CAS  PubMed  Google Scholar 

  4. Storey, K. G., Crossley, J. M., De Robertis, E. M., Norris, W. E. & Stern, C. D. Neural induction and regionalisation in the chick embryo. Development 114, 729–741 (1992).

    CAS  PubMed  Google Scholar 

  5. Stern, C. D. Initial patterning of the central nervous system: how many organizers? Nature Rev. Neurosci. 2, 92–98 (2001).

    Article  CAS  Google Scholar 

  6. Harland, R. Neural induction. Curr. Opin. Genet. Dev. 10, 357–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Baker, J. C., Beddington, R. S. & Harland, R. M. Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev. 13, 3149–3159 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gomez-Skarmeta, J., De La Calle-Mustienes, E. & Modolell, J. The Wnt-activated Xiro1 gene encodes a repressor that is essential for neural development and downregulates Bmp4. Development 128, 551–560 (2001).

    CAS  PubMed  Google Scholar 

  9. Wilson, S. et al. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411, 325–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Hemmati Brivanlou, A. & Melton, D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88, 13–17 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Alvarez, I. S., Araujo, M. & Nieto, M. A. Neural induction in whole chick embryo cultures by FGF. Dev. Biol. 199, 42–54 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Storey, K. G. et al. Early posterior neural tissue is induced by FGF in the chick embryo. Development 125, 473–484 (1998).

    CAS  PubMed  Google Scholar 

  14. Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A. & Stern, C. D. Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M. & Edlund, T. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10, 421–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Streit, A. et al. Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125, 507–519 (1998).

    CAS  PubMed  Google Scholar 

  17. Ribisi, S. Jr et al. Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis. Dev. Biol. 227, 183–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Doniach, T. Basic FGF as an inducer of anteroposterior neural pattern. Cell 83, 1067–1070 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Launay, C., Fromentoux, V., Shi, D. L. & Boucaut, J. C. A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122, 869–880 (1996).

    CAS  PubMed  Google Scholar 

  20. Sasai, Y., Lu, B., Piccolo, S. & De Robertis, E. M. Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J. 15, 4547–4555 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hongo, I., Kengaku, M. & Okamoto, H. FGF signaling and the anterior neural induction in Xenopus. Dev. Biol. 216, 561–581 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Dale, L. & Jones, C. M. BMP signalling in early Xenopus development. Bioessays 21, 751–760 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Amaya, E., Stein, P. A., Musci, T. J. & Kirschner, M. W. FGF signalling in the early specification of mesoderm in Xenopus. Development 118, 477–487 (1993).

    CAS  PubMed  Google Scholar 

  24. Lamb, T. M. et al. Neural induction by the secreted polypeptide noggin. Science 262, 713–718 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Streit, A. et al. Preventing the loss of competence for neural induction: HGF/SF, L5 and Sox-2. Development 124, 1191–1202 (1997).

    CAS  PubMed  Google Scholar 

  26. Kamachi, Y. et al. Involvement of SOX proteins in lens-specific activation of crystallin genes. EMBO J. 14, 3510–3519 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishii, Y., Rex, M., Scotting, P. J. & Yasugi, S. Region-specific expression of chicken Sox2 in the developing gut and lung epithelium: regulation by epithelial-mesenchymal interactions. Dev. Dyn. 213, 464–475 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Wood, H. B. & Episkopou, V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev. 86, 197–201 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Kispert, A., Ortner, H., Cooke, J. & Herrmann, B. G. The chick Brachyury gene: developmental expression pattern and response to axial induction by localized activin. Dev. Biol. 168, 406–415 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Kishi, M. et al. Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm. Development 127, 791–800 (2000).

    CAS  PubMed  Google Scholar 

  31. Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S. & Sasai,Y. Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125, 579–587 (1998).

    CAS  PubMed  Google Scholar 

  32. Mizuseki, K., Kishi, M., Shiota, K., Nakanishi, S. & Sasai, Y. SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos. Neuron 21, 77–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Muhr, J., Graziano, E., Wilson, S., Jessell, T. M. & Edlund, T. Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron 23, 689–702 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Dale, J. K. et al. Differential patterning of the ventral midline cells by axial mesoderm is regulated by BMP7 and chordin. Development 126, 397–408 (1999).

    CAS  PubMed  Google Scholar 

  35. Shawlot, W. & Behringer, R. R. Requirement for Lim1 in head-organizer function. Nature 374, 425–430 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Ye, W., Shimamura, K., Rubenstein, J. L. R., Hynes, M. A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural ridge. Cell 93, 755–766 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Irving, C. & Mason, I. Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127, 177–186 (2000).

    CAS  PubMed  Google Scholar 

  38. Modolell, J. & Campuzano, S. The achaete-scute complex as an integrating device. Int. J. Dev. Biol. 42, 275–282 (1998).

    CAS  PubMed  Google Scholar 

  39. Sechrist, J. & Bronner-Fraser, M. Birth and differentiation of reticular neurons in the chick hindbrain: ontogeny of the first neuronal population. Neuron 7, 947–963 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Papalopulu, N. & Kintner, C. A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122, 3409–3418 (1996).

    CAS  PubMed  Google Scholar 

  41. Franco, P. G., Paganelli, A. R., Lopez, S. L. & Carrasco, A. E. Functional association of retinoic acid and hedgehog signalling in Xenopus primary neurogenesis. Development 126, 4257–4265 (1999).

    CAS  PubMed  Google Scholar 

  42. Ma, Q., Kintner, C. & Anderson, D. J. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Brewster, R., Lee, J. & Ruiz i Altaba, A. Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 393, 579–583 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Henrique, D. et al. Cash4, a novel achaete-scute homologue induced by Hensen's node during generation of the posterior nervous system. Genes Dev. 11, 603–615 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Brown, J. M. & Storey, K. G. A region of the vertebrate neural plate in which neighbouring cells can adopt neural or epidermal cell fates. Curr. Biol. 10, 869–872 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Spann, P. et al. The spatial and temporal dynamics of Sax1 (CHox3) homeobox gene expression in the chick's spinal cord. Development 120, 1817–1828 (1994).

    CAS  PubMed  Google Scholar 

  47. Torii, M. et al. Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 126, 443–456 (1999).

    CAS  PubMed  Google Scholar 

  48. Pevny, L. H., Sockanathan, S., Placzek, M. & Lovell Badge, R. A role for SOX1 in neural determination. Development 125, 1967–1978 (1998).

    CAS  PubMed  Google Scholar 

  49. Lee, J. E. et al. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix–loop–helix protein. Science 268, 836–844 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Roztocil, T., Matter Sadzinski, L., Alliod, C., Ballivet, M. & Matter, J. M. NeuroM, a neural helix–loop–helix transcription factor, defines a new transition stage in neurogenesis. Development 124, 3263–3272 (1997).

    CAS  PubMed  Google Scholar 

  51. Takebayashi, K. et al. Conversion of ectoderm into a neural fate by ATH-3, a vertebrate basic helix–loop–helix gene homologous to Drosophila proneural gene atonal. EMBO J. 16, 384–395 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lamar, E., Kintner, C. & Goulding, M. Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation. Development 128, 1335–1346 (2001).

    CAS  PubMed  Google Scholar 

  53. Stein, R., Mori, N., Matthews, K., Lo, L. C. & Anderson, D. J. The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1, 463–476 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Hardcastle, Z. & Papalopulu, N. Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27XIC1 and imparting a neural fate. Development 127, 1303–1314 (2000).

    CAS  PubMed  Google Scholar 

  55. Dubreuil, V., Hirsch, M., Pattyn, A., Brunet, J. & Goridis, C. The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity. Development 127, 5191–5201 (2000).

    CAS  PubMed  Google Scholar 

  56. Ohnuma, S., Philpott, A. & Harris, W. A. Cell cycle and cell fate in the nervous system. Curr. Opin. Neurobiol. 11, 66–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Henrique, D. et al. Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Myat, A., Henrique, D., Ish Horowicz, D. & Lewis, J. A chick homologue of Serrate and its relationship with Notch and Delta homologues during central neurogenesis. Dev.Biol. 174, 233–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Haddon, C. et al. Multiple delta genes and lateral inhibition in zebrafish primary neurogenesis. Development 125, 359–370 (1998).

    CAS  PubMed  Google Scholar 

  60. Sasai, Y., Kageyama, R., Tagawa, Y., Shigemoto, R. & Nakanishi, S. Two mammalian helix–loop–helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev. 6, 2620–2634 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Takebayashi, K., Akazawa, C., Nakanishi, S. & Kageyama, R. Structure and promoter analysis of the gene encoding the mouse helix–loop–helix factor HES-5. Identification of the neural precursor cell-specific promoter element. J. Biol. Chem. 270, 1342–1349 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Scardigli, R., Schuurmans, C., Gradwohl, G. & Guillemot, F. Crossregulation between Neurogenin2 and pathways specifying neuronal identity in the spinal cord. Neuron 31, 203–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Bellefroid, E. J. et al. Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and functions in neural specification. EMBO J. 17, 191–203 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gowan, K. et al. Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31, 219–232. (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Walther, C. & Gruss, P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449 (1991).

    CAS  PubMed  Google Scholar 

  67. Perez, S. E., Rebelo, S. & Anderson, D. J. Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126, 1715–1728 (1999).

    CAS  PubMed  Google Scholar 

  68. Schulze, A. & Downward, J. Navigating gene expression using microarrays — a technology review. Nature Cell Biol. 3, E190–E195 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Kornblum, H. I. & Geschwind, D. H. Molecular markers in CNS stem cell research: hitting a moving target. Nature Rev. Neurosci. 2, 843–846 (2001).

    Article  CAS  Google Scholar 

  70. Beckers, J. et al. Distinct regulatory elements direct delta1 expression in the nervous system and paraxial mesoderm of transgenic mice. Mech. Dev. 95, 23–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Yaworsky, P. J. & Kappen, C. Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene. Dev. Biol. 205, 309–321 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chitnis, A. B. & Dawid, I. B. Neurogenesis in zebrafish embryos. Methods Cell Biol. 59, 367–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622–627 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Pierani, A. et al. Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron 29, 367–384 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. L. Gómez-Skarmeta, E. Farrell and members of the Storey laboratory for comments. We acknowledge the support of the Human Frontier Science Program and the Medical Research Council (MRC). K.G.S. is an MRC Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate G. Storey.

Related links

Related links

DATABASE LINKS

FlyBase

achaete-scute

GenBank

cash4

chordin

ERNI

Krox20

NCAM

NeuroD

NeuroM

noggin

Otx2

p27Xic1

SoxD

XBF-1

Xiro3

X-ngnr-1

Xnr3

Zic2

LocusLink

brachyury

Dbx1

Dbx2

Delta

En2

Hes1

Hes5

Irx3

Mash1

Math1

NeuN

Ngn1

Ngn2

NKL

Nkx2.2

Nkx6.1

Notch

Pax6

Pax7

Phox2b

Sax1

SCG10

Serrate

Shh

Sox1

Sox2

Sox3

TUJ1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corral, R., Storey, K. Markers in vertebrate neurogenesis. Nat Rev Neurosci 2, 835–839 (2001). https://doi.org/10.1038/35097587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35097587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing