Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Growth dynamics of pentacene thin films

Abstract

The recent demonstration of single-crystal organic optoelectronic devices has received widespread attention1,2,3,4. But practical applications of such devices require the use of inexpensive organic films deposited on a wide variety of substrates. Unfortunately, the physical properties of these organic thin films do not compare favourably to those of single-crystal materials. Moreover, the basic physical principles governing organic thin-film growth and crystallization are not well understood. Here we report an in situ study of the evolution of pentacene thin films, utilizing the real-time imaging capabilities of photoelectron emission microscopy. By a combination of careful substrate preparation and surface energy control, we succeed in growing thin films with single-crystal grain sizes approaching 0.1 millimetre (a factor of 20–100 larger than previously achieved), which are large enough to fully contain a complete device. We find that organic thin-film growth closely mimics epitaxial growth of inorganic materials, and we expect that strategies and concepts developed for these inorganic systems will provide guidance for the further development and optimization of molecular thin-film devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ac, Development of the pentacene layer-by-layer contrast during deposition.
Figure 2: Evolution of the dendritic shape of pentacene islands on cyclohexene-saturated Si(001).
Figure 3: Layer coverage of pentacene during deposition on different substrates.
Figure 4: Coverage-dependent fractal dimension of single-molecular-layer pentacene islands on cyclohexene-saturated Si(001).

Similar content being viewed by others

References

  1. Schön, J., Kloc, C., Dodabalapur, A. & Batlogg, B. An organic solid state injection laser. Science 289, 599–601 (2000).

    Article  ADS  Google Scholar 

  2. Schön, J., Kloc, C. & Batlogg, B. Superconductivity in molecular crystals induced by charge injection. Nature 406, 702–704 (2000).

    Article  ADS  Google Scholar 

  3. Schön, J., Kloc, C., Laudise, R. & Batlogg, B. Electrical properties of single crystals of rigid rodlike conjugated molecules. Phys. Rev. B 58, 12952–12957 (1998).

    Article  ADS  Google Scholar 

  4. Schön, J., Dodabalapur, A., Kloc, C. & Batlogg, B. A light-emitting field-effect transistor. Science 290, 963–965 (2000).

    Article  ADS  Google Scholar 

  5. Dimitrakopoulos, C., Purushothaman, S., Kymissis J., Callegari, A. & Shaw, J. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822–824 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Dimitrakopoulos, C., Brown, A. & Pomp, A. Molecular beam deposited thin films of pentacene for organic field effect transistor applications. J. Appl. Phys. 80, 2501–2508 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Klauk, H. & Jackson, T. Pentacene organic thin-film transistors and ICs. Solid State Technol. 43, 63–77 (2000).

    CAS  Google Scholar 

  8. Klauk, H., Gundlach, D., Bonse, M. & Jackson, T. A reduced complexity process for organic thin film transistors. Appl. Phys. Lett. 76, 1692–1694 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Schön, J., Kloc, C., Bucher, E. & Batlogg, B. Efficient organic photovoltaic diodes based on doped pentacene. Nature 403, 408–410 (2000).

    Article  ADS  Google Scholar 

  10. Gundlach, D. J., Lin, Y. Y., Jackson, T. N., Nelson, S. F. & Schlom, D. G. Pentacene organic thin-film transistors—molecular ordering and mobility. IEEE Electron Device Lett. 18, 87–89 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Schön, J. H. & Batlogg, B. Trapping in organic field-effect transistors. J. Appl. Phys. 89, 336–342 (2001).

    Article  ADS  Google Scholar 

  12. Horowitz, G., Hajllaoui, R., Fichou, D. & El Kassmi, A. Gate voltage dependent mobility of oligothiophene field effect transistors. J. Appl. Phys. 85, 3202–3206 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Dimitrakopoulos, C. et al. Low-voltage, high-mobility pentacene transistors with solution-processed high dielectric constant insulators. Adv. Mater. 11, 1372–1375 (1999).

    Article  CAS  Google Scholar 

  14. Kasaya, M., Tabata, H. & Kawai, T. Scanning tunneling microscopy and molecular orbital calculation of organic molecules adsorbed on the Si(100) 2x1 surface. Surf. Sci. 400, 367–374 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Yamaguchi, T. Electronic states of adsorbed organic molecule: pentacene on Si(001) 2x1 surface. J. Phys. Soc. Jpn 68, 1321–1330 (1998).

    Article  ADS  Google Scholar 

  16. Campbell, R., Robertson, J. & Trotter, J. The crystal and molecular structure of pentacene. Acta Crystallogr. 14, 705–711 (1961).

    Article  CAS  Google Scholar 

  17. Bauer, E. The resolution of the low energy electron reflection microscope. Ultramicroscopy 17, 51–56 (1985).

    Article  CAS  Google Scholar 

  18. Telieps, W. & Bauer, E. An analytical reflection and emission UHV surface electron microscope. Ultramicroscopy 17, 57–66 (1985).

    Article  CAS  Google Scholar 

  19. Bauer, E. Low energy electron microscopy. Rep. Prog. Phys. 57, 895–938 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Tromp, R., Mankos, M., Reuter, M., Ellis, A. & Copel, M. A new low energy electron microscope. Surf. Rev. Lett. 5, 1189–1197 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Hamers, R. et al. Cycloaddition chemistry of organic molecules with semiconductor surfaces. Acc. Chem. Res. 33, 617–624 (2000).

    Article  CAS  Google Scholar 

  22. Lee, S., Hovis, J., Coulter, S., Hamers, R. & Greenlief, C. Cycloaddition chemistry on germanium(001) surfaces: The adsorption and reaction of cyclopentene and cyclohexene. Surf. Sci. 462, 6–18 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Zhang, Z. & Lagally, M. Atomistic processes in the early stages of thin-film growth. Science 276, 377–383 (1997).

    Article  CAS  Google Scholar 

  24. Tersoff, J., Denier van der Gon, A. & Tromp, R. Critical island size for layer by layer growth. Phys. Rev. Lett. 72, 266–269 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Zhang, Z., Chen, X. & Lagally, M. Bonding-geometry dependence of fractal growth on metal surfaces. Phys. Rev. Lett. 73, 1829–1832 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Feder, J. Fractals (Plenum, New York, 1988).

    Book  Google Scholar 

  27. Pickover, C. Computers, Pattern, Chaos and Beauty—Graphics from an Unseen World (St Martin’s, New York, 1990).

    Google Scholar 

  28. Witten, T. & Sander, L. Diffusion limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Ball, R., Brady, R., Rossi, G. & Thompson, B. Anisotropy and cluster growth by diffusion-limited aggregation. Phys. Rev. Lett. 55, 1406–1409 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Wulfhekel, W. et al. Conventional and manipulated growth of Cu/Cu(111). Surf. Sci. 348, 227–242 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Shaw and C. Dimitrakopoulos for discussions. F.M.z.H. was supported by the Alexander von Humboldt Foundation under the Feodor-Lynen programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-J. Meyer zu Heringdorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer zu Heringdorf, FJ., Reuter, M. & Tromp, R. Growth dynamics of pentacene thin films. Nature 412, 517–520 (2001). https://doi.org/10.1038/35087532

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087532

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing