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Abstract
For years we have known that cortical neurons collectively have synchronous or oscillatory patterns
of activity, the frequencies and temporal dynamics of which are associated with distinct behavioural
states. Although the function of these oscillations has remained obscure, recent experimental and
theoretical results indicate that correlated fluctuations might be important for cortical processes, such
as attention, that control the flow of information in the brain.

Research in systems neuroscience has traditionally focused on how neurons represent the world
and on the mechanisms that endow neurons with their response properties or receptive fields.
However, an equally important, but less well understood, aspect of brain function is how
neurons communicate. For instance, the presence of a red light in the visual field might be
irrelevant if in a theatre, but crucial if about to cross a road. The neural representation of the
red light might be, at some level, the same in the two situations, but this information is then
redirected and prioritized in totally different ways. Little is known about how, depending on
the current behavioural requirements, neural signals are routed or assessed in the nervous
system. There is evidence that timing is crucial: a recent study1 showed that whether
intracortical microstimulation influences performance in a sensory discrimination task depends
on the time at which the microinjected current is delivered relative to the natural stimulus onset.
This indicates that even a simple discrimination paradigm is executed according to an internal
schedule, such that the information provided by the sensory neurons is effectively transmitted
only during a certain time window. So, the temporal dynamics of neuronal interactions seem
to be important for the gating processes that control the information that goes through at a given
time.

On the other hand, networks of neurons show highly complex temporal dynamics. It is well
known from electroencephalographic studies2 that the small voltage signals recorded from the
scalp fluctuate at various frequencies, with dominant frequency components shifting according
to behaviour. Slow oscillations with a strong 0.75–4-Hz component are associated with certain
stages of sleep, whereas oscillations dominated by the 14–40-Hz band are typical of active,
awake states3,4. Direct measurement of field potentials from the cortex reveals even higher-
frequency components in the 40–200-Hz range5. At the single-neuron level, collective
oscillations in cortical neurons have been documented for several years6–8. One functional
interpretation is that this rhythmic behaviour is, again, related to higher-order sensory
representations, but this idea continues to be hotly debated9,10. The problem is not that
oscillations are not there, but that linking them to behaviour has been difficult.
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Synchrony is another form of temporal relationship between neurons that has been intensely
studied. As with ‘oscillations’ and ‘rhythmic activity’, the term synchrony encompasses a
spectrum of neuronal behaviours with various spatial and temporal scales11. Here, we will label
all of these phenomena as temporally correlated activity, which describes a common feature:
when two neurons are correlated, they do not fire independently of each other; when one fires,
the other is more or less likely to fire. This is an extremely broad generalization, especially as
the underlying mechanisms and potential functions can vary greatly, but here we discuss a
broad idea, so it is better to think in general terms.

Recent theoretical and experimental findings have brought the study of temporally correlated
neuronal activity into a new perspective. This has emerged by investigating two related
questions. First, how is a post-synaptic neuron affected by the presence of correlated activity
in its inputs? The response of a neuron depends on the rates at which excitatory and inhibitory
input spikes impinge on it, but the temporal pattern of those spikes can also modulate
postsynaptic activity. When and how does this happen? This is a biophysical problem. Second,
what is the relationship between such temporal patterning and behaviour? It is important to
understand how networks generate and react to oscillatory signals, but it is just as important
to determine their function. This is a systems-level problem.

Here, we review recent findings on these two issues. First, we briefly discuss some examples
of the traditional interpretation in which correlation is viewed as an additional coding
dimension for building internal representations. Then we discuss some common correlation
patterns and review results which show that neurons can be highly sensitive to their presence.
We propose that correlations could be controlled independently of firing rate and that this
would serve to regulate the flow of information rather than its meaning. Finally, we discuss
several experiments in which changes in correlations have been measured and reported to be
independent of changes in mean firing rate. In these cases, correlations covary with expectation,
attention, response latency or rivalry — all processes that affect the transit of information but
not how sensory stimuli are represented. The idea that correlations can gate the flow of neural
information is a recent viewpoint that could give rise to new theoretical and experimental
studies.

A short digression on coding strategies
For the sake of comparison, it is instructive to mention a few studies that are representative of
the more traditional approach, in which neural correlations are investigated in terms of their
potential value for stimulus representation. This list is by no means exhaustive.

The antennal lobe of insects is an interesting preparation because various manipulations are
possible. Spikes in this structure are typically synchronized by 20-Hz oscillations12–14. When
these neurons are artificially desynchronized15, the specificity of downstream responses is
strongly degraded; selectivity for different odours decreases and responses to new odours arise,
even though this loss of information does not occur upstream. Further experiments16 indicate
that the disruption of synchrony has a real impact on behaviour, impairing odour
discrimination. Oscillations have also been observed in the mammalian olfactory bulb17, but
whether they serve a similar function is unknown.

Consider two neurons with overlapping receptive fields and, therefore, a considerable degree
of synchrony. Analysis of the activity of such visual neurons in the lateral geniculate nucleus
has shown18 that significantly more information about the stimulus (around 20% more) can be
extracted from their spike trains if the synchronous spikes are taken into account separately
from the non-synchronous ones. In a similar vein, recordings from primary auditory cortex
indicate19 that, when a stimulus is turned on, neurons respond by changing their firing rates
and their correlations. In many cases, the firing rate modulations are transient: if the sound is
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sustained, they tend to disappear. However, the evoked changes in correlation can be
sustained19. So, the correlation structure can signal the presence of a stimulus in the absence
of changes in firing rate. In an example that is usually associated with the BINDING
PROBLEM7,9,10, the receptive fields of two visual neurons were stimulated in two
conditions20, one in which a single object was presented, and another in which two objects
were presented, but in a way that evoked practically the same firing rates as the single stimulus.
In this case, the synchrony between pairs of neurons reflected whether one or two stimuli were
shown, even when both firing rates did not vary across conditions20.

These examples show that, if neurons are sensitive to correlations, they are able to extract more
information from their inputs. So, the neural codes used to represent the physical world could
be made more efficient by taking into account the second-order statistics of neural responses.
The degree to which this is actually the case is not the main issue here; the key observation is
that, from this point of view, correlations are stimulus-dependent, just like sensory-evoked
firing rates. The studies discussed below point to a more dynamic picture, in which correlations
change rapidly as functions of internal events, and can regulate the flow of neural information,
rather than its meaning.

Common patterns of correlated activity
A popular analytical tool used by neuroscientists to study the joint activity of neurons is the
cross-correlation histogram or cross-correlogram (REFS 21–23; see also REF. 24). It is
constructed from the spike trains of two neurons, and shows the probability (or some quantity
proportional to it) that neuron B fires a spike τ milliseconds before or after a spike from neuron
A; τ is called the time shift or time lag. When the two spike trains are independent, the cross-
correlogram is flat; if there is any covariation in the spike trains, one or more peaks appear23.
For instance, a peak at zero time shift means that the two neurons tend to fire at the same time
more often than expected by chance. Usually, cross-correlograms are corrected so that peaks
caused by covariations in mean firing rate, computed over several tens or hundreds of
milliseconds, are eliminated21–23.

FIGURE 1 shows artificial, computer-generated spike trains and illustrates two common forms
of correlated activity: synchrony and oscillations. Each raster plot shows twenty spike trains
generated simultaneously. The artificial neurons fire randomly but always at the same mean
rate of 27 spikes s−1. What varies across panels is the temporal relationship between spikes
from different neurons. In FIG. 1a–c, the neurons fire with increasing degrees of synchrony,
caused by common inputs. The red traces superimposed on the rasters show the overall spike
density or instantaneous firing rate, averaged over all neurons; the cross-correlograms are
shown below, in blue. Typically, cross-correlograms from experimental data also have single
peaks, although they can vary in width from a few to several hundred milliseconds11,25–28. As
the peak increases, different neurons tend to fire more often at the same time, causing larger
fluctuations in spike density. So, when inputs to a neuron are synchronized, the total synaptic
drive generated might be much more variable than when inputs are independent (this also
depends on whether the inputs are excitatory or inhibitory, as discussed below).

In FIG. 1d–f, the 20 neurons fired at a rate that varied sinusoidally with a frequency of 25 Hz,
with identical phase for all units. Here, by construction, fluctuations in spike density increase
with oscillation amplitude. Cross-correlograms show the strength and frequency of the
oscillations. In the examples shown, oscillatory activity could also be detected from the spike
trains of individual neurons, as indeed it has been29,30. However, a subtle technicality should
be mentioned: the spike densities in FIG. 1 involve an ensemble average (an average over
neurons), whereas spike densities are often constructed from single-neuron peristimulus time
histograms (PSTHs), which involve an average over trials. The PSTH is useful in detecting
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synchronous activity that is triggered by external stimuli, because there is an absolute time
reference; however, some sort of ensemble average is necessary to analyse oscillations that are
generated intrinsically, as these have their own timing. Oscillations observed in actual
experimental records are complex, typically involving broad frequency bands30–33, so they
might be difficult to detect from single-neuron spike trains32,33.

A significant drawback of cross-correlation methods is that they require large amounts of data
to resolve significant deviations from independence. Alternative techniques that overcome this
and other limitations are discussed below.

When are neurons sensitive to correlated input?
Having described some correlation patterns that are commonly observed in various
experimental preparations, we now turn to the first main issue: the sensitivity of a postsynaptic
cortical neuron to the presence of such correlations in its inputs. The goal is to spell out, at
least to a first approximation, the factors that determine such sensitivity.

Coincidence detection
In theory, neurons might be exquisitely sensitive to certain temporal input patterns. The
classical mechanism proposed for this is coincidence detection, which occurs when a neuron
is sensitive to the arrival of spikes from two or more inputs within a short time window34–37.
There are examples, most notably in the auditory system38,39, in which highly accurate
coincidence detection takes place, but the question is whether this mechanism is commonly
used throughout the cortex.

In the traditional view, coincidence detection is based on a very short MEMBRANE TIME
CONSTANT34–37. However, it can be greatly enhanced by the spatial arrangement of synapses
and by nonlinear processes. For example, neighbouring synapses might interact strongly,
forming clusters in which responses to simultaneous activation are much stronger than the sum
of individual, asynchronous responses40,41. A neuron could operate with many such clusters
which, if located on ELECTROTONICALLY DISTANT parts of the dendritic tree, could act
independently of each other, increasing storage and computational capacity42,43. Voltage-
dependent channels in the dendrites might mediate or boost such nonlinear interactions between
synapses40–43. These nonlinearities could, in principle, increase the capacity for coincidence
detection to the point of making the neuron selective for a specific temporal sequence of input
spikes; they could also serve as a basis for gating or selective amplification mechanisms42,
44. However, the degree to which the cortex exploits such nonlinearities is unclear.

An alternative mechanism for enhancing the coincidence detection capabilities of a neuron is
to adjust the kinetics of its voltage-sensitive channels to favour large, transient depolarizing
events like those that would result from synchronous inputs (FIG. 1a–c). Recent in vivo
recordings45 give some support to this possibility.

In these examples, the question is whether, at given input rates, the temporal alignment of
spikes is important for the postsynaptic response. But the coincidence detection problem can
also be posed as follows46,47: if a neuron receives a volley of input spikes, what is the likelihood
of evoking a response (reliability), and what will its timing be relative to the centre of mass of
the input volley (precision)? Theoretical studies indicate that, in this case, the temporal
precision of the response spikes is not limited by the membrane time constant, but rather by
the rise time of excitatory synaptic events47. The end result is that a volley of synchronized
action potentials can propagate in a stable way through many layers.
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Neurons can be driven by fluctuations
The flip side of coincidence detection is integration. Neurons can also act as integrators: they
can sum or average their inputs to generate an action potential34,37,48. Earlier theoretical
arguments suggested that neurons acting as integrators would not be sensitive to temporal
correlations48,49, or that these would matter only at high firing rates, when refractory effects
become important50,51. However, these conclusions were based on models in which parameter
space had been explored in a limited way; in particular, the role of inhibition had been
underestimated. Recent results52 show that neurons can still be highly sensitive to weak
correlations in their inputs, even if there is no spatial segregation along the dendritic tree, no
variation in spike threshold, and no synaptic interaction beyond the expected temporal
summation of postsynaptic currents. A key quantity in this case is the ‘balance’ of the neuron,
which refers to the relative strength between inhibitory and excitatory inputs52–54. When the
neuron is not balanced, excitation is, on average, stronger than inhibition, such that the net
synaptic current is depolarizing and the mean steady-state voltage is above threshold. In this
case, the main driving force is the drift towards steady state, and input fluctuations have a small
effect on the rate of output spikes52,55. Conversely, when the neuron is balanced, both
excitation and inhibition are strong, such that the mean input current is zero or very small, and
the mean steady-state voltage remains below threshold. However, the neuron might still fire,
because there are large voltage fluctuations that lead to random threshold crossings. Networks
of balanced neurons have rich dynamics56–59 and can react to external stimuli on effective
timescales that are much smaller than the membrane time constant of a single neuron57,58.
Crucially, in this mode, any factor that enhances the fluctuations will produce more intense
firing52,60.

There is a subtle but important distinction between mechanisms that alter input fluctuations.
Higher firing rates should be seen in a balanced neuron if fluctuations increase without affecting
the mean synaptic conductances, as when only the correlations are changed52. But if stronger
fluctuations are accompanied by increases in conductance, as when both excitatory and
inhibitory inputs fire more intensely, the firing rate can decrease60–62. In a complex network,
these effects can be hard to disentangle.

FIGURE 2 compares the responses of balanced (red traces) and unbalanced (green traces)
model neurons. These are driven by excitatory and inhibitory input spike trains, like those
illustrated in FIG. 1. The four panels correspond to different correlation patterns in the inputs.
Cell responses were obtained using leaky integrate-and-fire models (see BOX 1). In FIG. 2a,
all inputs are independent. The voltage traces show a typical difference between balanced and
unbalanced modes: although the output rate is approximately the same, the subthreshold
voltage of the balanced neuron is noisier and its interspike intervals are more variable52,54.
FIG. 2b shows what happens when the excitatory inputs fire partly synchronously (10% of
their inputs being shared, as in FIG. 1a). The firing rate of the balanced neuron always increases
relative to the response to independent inputs, whereas the rate of the unbalanced neuron might
show smaller (although still substantial) increases, or might decrease50,51 if the output rate is
already high without correlations. Another effect of synchrony is to increase the variability of
the output spike trains, for both balanced and unbalanced configurations52,63–65; this can be
seen by comparing FIG. 2b and d with FIG. 2a. Correlations between inhibitory inputs can also
produce stronger responses (FIG. 2c). When the inhibitory drive oscillates sinusoidally, as in
FIG. 1e, the firing rate of the balanced neuron increases to practically double that recorded
with no oscillations; by contrast, the firing rate of the unbalanced neuron does not change.
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Box 1

The leaky integrate-and-fire model

In the leaky integrate-and-fire model, driven by conductance changes52,54,124,125,
membrane potential V evolves according to τm(dV/dT) = −(V + Eleak) −gexc(V −Eexc)
−ginh(V −Einh), but the spike-generating currents are substituted by a simple rule: whenever
V exceeds a threshold (−54 mV), a spike is emitted and V is clamped to a reset value (−60
mV) for a refractory period (1.72 ms). After that, V continues to evolve according to the
above equation. Every time an excitatory input spike arrives, the excitatory synaptic
conductance gexc increases instantaneously by an amount ḡexc; otherwise, it decreases
exponentially towards zero with a certain time constant (5 ms). The inhibitory conductance
is modelled in the same way, except that it increases by ḡinh whenever an inhibitory spike
arrives. In FIG. 2, for the balanced neuron: ḡexc = 0.05 and ḡinh = 0.708. For the unbalanced
neuron:  ḡexc = 0.0167 and ḡinh = 0.0822. All other parameters were identical for the two
conditions: τm = 20 ms, Eleak = −74 mV, Eexc = 0 mV, Einh = −63 mV, where τm is the
membrane time constant, Eleak s the resting membrane potential, and Eexc and Einh are,
respectively, the reversal potentials of the excitatory and inhibitory synapses. See REF. 52

for further details.

The balance of a neuron is important in determining its sensitivity to correlations, but there is
another key factor52. There are three correlation terms: correlations between pairs of excitatory
neurons, between pairs of inhibitory neurons, and between excitatory–inhibitory pairs. The last
term acts in the opposite direction, decreasing the fluctuations, and the total effect on the
postsynaptic neuron is a function of the three terms. In FIG. 2d, all inputs to the model neurons
are equally correlated, but the balanced model shows no change in firing rate. So, it is possible
to have strong correlations between all inputs, but still not see a change in the firing rate of the
postsynaptic neuron relative to the case of independent inputs.

In summary, a balanced neuron is much more sensitive to input correlations than an unbalanced
one because correlations affect the fluctuations in synaptic drive, which cause the balanced
neuron to fire. However, the postsynaptic response depends on the relative values of the three
correlation terms, which might cancel out. The key point here is that the output of the neuron
will be determined, not only by the firing rates of its inputs, but also by their correlations.
Neurons can, in a statistical sense, be highly sensitive to the temporal patterns of their input
spikes.

How correlations affect downstream activity?
From the examples in FIG. 2, it is clear that input correlations can have various effects. For
instance, everything else being equal, oscillations can increase the gain of a balanced neuron
(FIG. 2c, right) by increasing the output rate by approximately the same factor across a large
dynamic range. On the other hand, notice the unbalanced configuration in FIG. 2b: for output
rates below 30 spikes−1 or so, correlations might act as a switch, turning on or off the
transmission of spikes. FIGURE 2b–d shows simple examples, but other, more complex
correlation patterns might have different effects.

In previous studies36,66,67, it was noted that synchronous excitatory inputs can be more
effective than independent inputs, but that the range of effects that correlations can give rise
to52 seems to have been underestimated49. Many variants of the following scenario are
plausible. Consider three groups of neurons — A, B and M. Group A drives group B, which
is sensitive to correlations, and group M provides input to A in a way that changes the
correlations in A, but not the mean firing rate. The response of B will change as M is activated,
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and the nature of the change will depend on the details of the circuitry68. The plots in FIG. 2
indicate possible modulations in gain69–71 (FIG. 2band c , balanced), or full on–off
switching72 for low output rates (FIG. 2b, unbalanced). Regardless of the final effect, a group
of neurons M might affect another group A in two, not necessarily exclusive, ways: by changing
the firing rates of A or the correlations between local neurons in A. There are two knobs that
can be turned, not just one.

How neurons generate rhythmic activity
In addition to synchronized inputs arising from sensory codes, oscillations can be generated
intrinsically. The phase of a spike relative to these oscillations can also carry information. For
example, there are cells in the hippocampus of rats that fire according to the location of the
animal in the world: they have a ‘place field’, and the phase of their spikes relative to an
underlying oscillation encodes where the animal is located within this field73. The phase of a
spike from a pyramidal cell can also encode the number of inhibitory inputs impinging on it,
independently of the information carried by the firing rate74.

Cortical structures have a wide range of intrinsic mechanisms that could generate synchronous
activity75. Inhibitory interneurons might be particularly important. They are highly effective
at entraining cortical neurons76–79. In addition, recent evidence indicates that fast-spiking
interneurons are highly sensitive to single excitatory inputs80,81, and that there is direct
electrical coupling between specific classes of cortical inhibitory interneurons82. All of these
factors make inhibitory cells good candidates for generating synchronized oscillations in the
20–40-Hz range.

Cortical oscillations are regulated by neuromodulatory substances. Neurons in the
hippocampus, for example, show several kinds of oscillation, each with different dominant
frequencies83,84. Rhythms in the delta (0.5–2-Hz), theta (4–12-Hz) and gamma (30–80-Hz)
frequency bands are fairly common, and vary with behavioural conditions83. Interestingly, the
neurotransmitter acetylcholine modulates hippocampal circuitry such that the transitions
between these three frequency bands depend on its concentration83.

Although the functional roles of these oscillations still need to be worked out in detail, they do
correlate with certain stereotyped behaviours4,73,85–87. If different frequency bands
correspond to distinct functions, then modulating the level of acetylcholine or other
neurotransmitters would cause a switch from one to another. The lesson is that neuromodulators
can shift the states of cells, giving rise to oscillatory activity or switching from one oscillatory
regime to another. Experiments in invertebrates88,89 show that neurons can perform such
switching, with highly specific behavioural consequences.

What can correlations tell us?
So far, we can conclude that several mechanisms are available to cortical neurons that allow
them to generate and to respond to concerted activity as part of their everyday dynamics. Now
we turn to the relationship between correlations and specific functions. First, we consider the
advantages and limitations of measuring correlations, and then we discuss a broad range of
experiments in which correlations are linked to expectation, attention, sensory latencies and
rivalry —processes that regulate the strength but not the content of neural signals.

In itself, the presence of correlations between pairs of neurons is not particularly meaningful:
either common inputs or synaptic interactions between them will give rise to some form of
correlated activity8,22,49,56–59. Synchrony per se could reflect, for example, nothing more than
receptive field overlap. Likewise, oscillations can arise naturally from the intrinsic properties
of neurons90–92 or from the recurrent nature of cortical circuits59,77,78,93–95. This is not to say
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that correlations are not important, but simply that their presence alone is not particularly
informative.

What is important, however, is that changes in the correlation structure of a neural circuit reflect
changes in its functional connectivity22,96,97. We should emphasize this: it is the change from
one condition to another, or from one moment to another, that serves as a probe for how the
circuit works.

The caveat here is that changes in correlated activity could easily be confounded by
simultaneous variations in the average firing rates of the recorded neurons. Therefore, studies
that rely on the measurement of correlations face three technical problems: first, two or more
neurons need to be recorded simultaneously; second, two conditions should be compared to
make a differential measurement; and third, other aspects of the evoked neural activity should
change as little as possible across conditions. In particular, when the two conditions involve
different stimuli, it is likely that the evoked firing rates from the recorded neurons will change;
even the populations that respond within a given area might be different. This is one of the
main factors that muddles the interpretation of experiments in which correlations have been
measured9,10. To circumvent these obstacles, investigators have studied correlated activity in
systems in which, across trials, variations in stimulation conditions are kept to a minimum, and
the most significant changes are in the internal state of a subject.

Expectation boosts synchrony in motor cortex
In one paradigm, used to study the relationship between activity in the primary motor cortex
(M1) and behaviour98, monkeys were trained to perform a simple delayed-response task in
which two cues were presented. The first cue indicated a target position and instructed the
animal to get ready, whereas the second cue gave the ‘go’ signal for the requested hand
movement. Crucially, the go signal could appear 600, 900, 1,200 or 1,500 ms after the cue,
and this delay varied randomly from trial to trial. Neurons recorded in M1 increased their
synchrony around the time of the actual sensory stimulus, or when the animal expected the go
signal but it did not appear98. In the former case, which is more like a sensory-evoked response,
synchronization was accompanied by changes in firing rate, although these were separate
effects (according to the analysis, the changes in synchrony were not due to observed changes
in rate). However, in the latter case, which depends exclusively on the internal state of the
monkey, firing rates did not change.

Another interesting observation98 was that the patterns of synchronization were diverse: some
pairs of neurons synchronized only before the first cue, others before and after the cue, others
at only some of the expected go times, and so on. So, the pattern of correlations among neurons
can change rapidly as a function of internal state without accompanying variations in mean
firing rate.

Attention synchronizes somatosensory activity
Neurons in the secondary somatosensory cortex (S2) respond to tactile stimuli, but are also
sensitive to attention99–101 and behavioural context102. Motivated by an earlier theoretical
proposal103, the correlations between pairs of neurons recorded in S2 were analysed as
functions of attention104. The monkeys used for these experiments were trained to perform
two tasks, one visual and one tactile. In the tactile task99,104, a raised pattern was presented to
the fingertips, and the monkey had to indicate whether it matched a visual pattern shown on a
monitor. In the visual task, identical tactile stimuli were presented, but the animal had to ignore
them; the actual task leading to a reward was to detect the dimming of a target spot shown on
the monitor. The animals were cued to perform blocks of trials of either task. In the recording
sessions from which data were used for the analysis, the monkeys switched tasks at least four
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times104. So, responses to the same tactile stimuli were obtained in two conditions, when the
monkeys had to pay attention to them and when they had to ignore them.

Cross-correlations between pairs of neurons were computed in the two conditions104. The red
curves in FIG. 3 are correlograms obtained when the animals performed the tactile task; the
blue curves are those obtained when animals performed the visual task. These histograms are
essentially the same constructs as those shown in FIGS 1 and 2, but the units on the y axes are
coincidences s−1, and the normalization is slightly different. The top two graphs in FIG. 3 are
representative of the more common case, in which higher synchrony was observed with
attention focused on the tactile stimuli. In some cases, the opposite effect was observed, as
shown in the bottom graph; however, overall, directing attention to the fingertips tended to
synchronize the S2 neurons responding to stimuli presented there. Interestingly, changes in
synchrony were stronger when the somatosensory discrimination task was more difficult104.

In these experiments, the firing rates of S2 neurons also varied with attention, consistent with
previous reports99–102. About 78% of the neurons showed significant changes in firing rate
across conditions, whereas only 11% of all neuron pairs showed significant changes in
synchrony104. The analysis eliminated changes in correlation that might arise when pairs of
neurons vary their mean firing rates jointly as functions of attention. Besides, these two effects
were unrelated because changes in synchrony were not correlated with changes in firing rate.
But even if there are two separate effects here, the changes in rate do pose a problem. Consider
a downstream neural population driven by S2 and sensitive to input synchrony: will the
observed changes in synchrony make a difference when accompanied by large changes in firing
rate? This is unknown.

Attention synchronizes visually evoked activity
Attention modulates the firing rates of neurons in many parts of the visual system105–111.
However, the strength of this modulation can vary; in particular, the contrast at which stimuli
are displayed can be adjusted so that changes in firing rate are minimized112. This was done
recently113 to investigate how correlations between visual neurons in area V4 change with
attention, under conditions in which sensory input is constant and mean firing rates vary
minimally.

Monkeys were trained to fixate on a central spot and to attend to either of two stimuli presented
simultaneously and at the same eccentricity113 (FIG. 4). One of the stimuli fell inside the
receptive field of a neuron, the activity of which was recorded. So, the responses to the same
stimulus could be compared in two conditions, with attention inside or outside the neuron’s
receptive field. At the same time, the local field potential (LFP) was recorded from a nearby
electrode. The LFP is the electric field caused by transmembrane currents flowing near the
electrode, so it gives some indication of average local activity. This is a key premise in the
interpretation of many synchrony results, but it seems reasonable because variations in LFP
and membrane potential recorded intracellularly are highly correlated114. The LFP is
particularly useful when searching for oscillatory 31–33 and synchronous115 activity. Examples
of LFP traces and spike trains from the two electrodes are shown in FIG. 4a and b.

The correlation that was studied in these experiments113 was that between the LFP and the
recorded neuron’s spikes. The key quantity here is the spike-triggered average of the LFP, or
STA. The STA is obtained by adding, for each spike recorded, a segment of the LFP centred
on the time of the spike; the final sum is then divided by the total number of spikes. The result
is the average LFP waveform that is observed around the time of a spike. STAs computed for
attention outside and inside the receptive field are shown in FIG. 4c and d, respectively. A
rigorous comparison is shown in FIG. 4e, which plots the power spectra of the two STAs. Note,
in FIG. 4c and d, that the spike occurs very near to the trough of both the low- and high-
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frequency components31–33. This is consistent with the idea that the LFP is related to the
average voltage of the cells near the electrode114, but with opposite sign because negative
currents depolarize the membrane. The similarity in phase is also evidence for coupled
oscillations in the local population of neurons. The two STAs are similar, but they are not
identical: the rapid fluctuations are more pronounced when attention is directed inside the
receptive field; power in the low-frequency band (0–17 Hz) decreases, whereas power in the
high-frequency band (30–70 Hz) increases. Because the STA reflects the correlation between
one neuron and the neighbouring population, the interpretation is that, as attention shifts to the
receptive fields of a cluster of neurons, these become more synchronized at high frequencies
and less so at low frequencies. These changes in synchrony were quantified rigorously using
a further measure that was independent of firing rate and of LFP power.

The measures of synchrony used in this study are much more sensitive than the traditional
correlogram, because the LFP involves averaging over a population113. Although the changes
in synchrony were modest — on average, low-frequency synchronization decreased by 23%
and high-frequency synchronization increased by 19% — changes in firing rate were also
small; these were enhanced by a median of 16% with attention inside the receptive field.
Therefore, under these conditions, the changes in synchrony can be significant in terms of their
impact on the responses of downstream neurons. Another interesting observation is that,
whereas the attentional modulation of firing rate started about 450 ms after stimulus onset,
significant changes in synchrony could be detected very early in the response (50 ms after
stimulus onset). These attentional effects were spatially specific; they did not result from a
generalized change in arousal.

What exactly is the neural correlate of attention? What happens to the S2 or the V4 circuitry
as attention is focused inside or outside their response fields? Unfortunately, we do not yet
know. The plots in FIG. 2c, for example, indicate that an increase in oscillatory coherence
could lead to higher firing rates. But things are not so simple105–112. The first problem is that
attention can lead, not only to increases, but also to reductions in firing. It is not known whether
these decreases in rate are correlated with decreases in synchrony at some level. Second, the
magnitude of the modulation depends on stimulus configuration, on the neuron’s selectivity
and tuning properties, and on contrast. Third, our mechanistic understanding of how one circuit
can synchronize another, or how an increase in input synchrony might enhance or suppress the
activity of a postsynaptic target, is still crude.

However, these results are important for two reasons: first, because they constrain the space
of possible interactions between a local circuit and its attentional inputs; and second, because
they support the notion that the correlation structure of a neural population may change
dynamically, and may be crucial in determining the responses of its downstream targets.

Latencies are correlated by gamma oscillations
The study discussed above113 shows that synchrony, specifically in the gamma frequency
(roughly 30–80 Hz), might enhance the processing of information in some way. But what
exactly is the impact of such synchronization? Another recent study116 indicates at least one
measurable consequence: the latencies of synchronized neurons responding to a stimulus can
shift in unison. In this case, the paradigm was very simple: oriented bars of light were flashed
and the responses of two or more neurons in the primary visual cortex (V1) were recorded,
along with LFPs. Neurons were activated by the stimuli, and the key quantity examined was
the time taken for the neurons to respond — the latency —which was calculated on each trial.
Latencies covaried fairly strongly from trial to trial (mean correlation coefficient of 0.34, with
a range from 0.18 to 0.55), so pairs of neurons tended to fire early or late together. This tendency
depended on the amount of gamma power in the LFPs immediately before the stimulus. When
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the LFPs from two electrodes both had a strong gamma component, the latency covariation
between the two recorded neurons from the same pair of electrodes was high. Note that the
spectral composition of the LFPs was only weakly related to changes in firing rate, so short
latencies were probably not due to changes in excitability. This means that, if neurons are
synchronized at around 40 Hz, just before a stimulus is presented, they will respond at about
the same time116. In other words, although the mean firing rates are mostly insensitive to shifts
in oscillation frequencies, the time spread in the evoked spikes from multiple neurons is much
smaller when the gamma oscillations are enhanced. This could certainly have an impact on a
downstream population driven by these neurons46,47,52. So, the modulation of latency
covariations116 is a concrete example of how the synchrony of a local circuit can be used to
control the strength of a neural signal.

Rivalry induces changes in synchrony in V1
Another study117 investigated the synchronization of V1 neurons, this time using an interocular
rivalry paradigm. In rivalry experiments118,119, different images are shown to the two eyes,
but only one image is perceived at any given moment. The percept can flip from one image to
the other randomly, but with a characteristic timescale that depends on the experimental setup.
The study in question117 was done on awake STRABISMIC CATS, a preparation with two
advantages: V1 neurons are dominated by a single eye, so their firing rates essentially depend
on what their dominant eye sees regardless of the other one, and it is relatively easy to know
which of the two images is perceived (at equal contrasts for the two images, one eye always
suppresses the other, and this can be measured by tracking the cat’s eye movements in response
to conflicting moving stimuli). The two conditions compared were a single image presented
to the eye driving the recorded neurons, or the same stimulus shown to the driving eye plus a
conflicting image presented to the other eye. The firing rates in these two conditions should
be the same, because of the strabismic condition; indeed, the rates did not change significantly
across conditions and did not depend on which image was perceived. However, synchrony did
change across conditions117. When neurons were driven by the eye providing the percept,
synchrony was much stronger in the rivalrous condition than in the monocular one. By contrast,
when neurons were driven by the eye for which the image became suppressed, synchrony was
much lower in the rivalrous condition than in the monocular one. In other words, when
conflicting images were presented, neurons responding to the image being perceived were
always more synchronized. Effects were seen in cross-correlograms among spike trains, but
were much more robust and evident in the STAs.

In this case, the stimuli were not strictly identical in the two conditions being compared, but
the feedforward thalamic inputs driving any single V1 neuron must have been extremely
similar. It is tempting to conclude then that the perceptual experience is expressed in V1 as a
synchronization pattern, but going that far is unnecessary; what matters is that synchrony is
consistently modulated across conditions independently of firing rate, and that the modulation
probably originates in the cortex. As in the case of latency covariations, what we understand
as the neural code for a stimulus does not change appreciably.

Conclusion
The literature showing that neural circuits have rhythmic and synchronous activity is vast, but
this is hardly unexpected given the divergent and convergent interconnections of the
cortex120,121, which lead to receptive field overlap, and the intrinsic and emergent oscillatory
properties of single and interconnected neurons, respectively. Nevertheless, the dynamics of
these forms of correlated activity can still be highly informative about the functional
connectivity of cortical circuits. This observation, and the idea that correlations between spikes

Salinas and Sejnowski Page 11

Nat Rev Neurosci. Author manuscript; available in PMC 2010 May 13.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



can be used for information processing, have been discussed before96,97,122, but the results
reviewed here lead to a more specific conclusion.

First, correlation measurements have been compared across conditions using paradigms in
which other attributes of the evoked neural activity — in particular, the mean firing rates —
vary as little as possible. These experimental studies indicate that large variations in
correlations can be observed in the absence of simultaneous variations in mean firing rates.
Second, through theoretical work, various factors have been identified that might endow
neurons with a high sensitivity to correlations. These two sets of findings support the idea that
correlations might be modulated independently of mean firing rates. In our view, this point is
of enormous interest and its generality might have been underappreciated; using such
independent modulations for object representation is just one possibility, the relevance of
which is still unclear9,10. What else could correlations be used for? There could be many other
alternatives. For example, according to a recent theoretical proposal123, the transient oscillatory
activity evoked by an auditory stimulus could serve as the basis for speech recognition, with
the advantage that this mechanism would be invariant to uniform time warp and intensity
change in input sounds. However, the experimental studies mentioned above point to a third
key piece of evidence: rate-independent modulations in synchrony have been linked to changes
in expectation, attention, response latency and rivalry — processes that adjust the flow of
information, but have little bearing on stimulus representation. Therefore, we suggest that a
more natural role for temporal correlations might be to control the strength of a signal, and
hence the downstream circuits that it reaches, rather than the nature of the information that it
conveys. Correlations might also regulate synaptic plasticity through spike-timing-dependent
mechanisms, enhancing the memory of attended stimuli.

The challenge that lies ahead is to work out how synchrony in a neural circuit can be controlled
by other circuits to perform useful operations.
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Glossary

BINDING PROBLEM The problem of binding together representations of the
different properties of an object (for example, its colour, form
and location)

MEMBRANE TIME
CONSTANT

A quantity that depends on the capacitance and resistance of
the cell membrane, and which sets a timescale for changes in
voltage. A small time constant means that the membrane
potential can change rapidly

ELECTROTONICALLY
DISTANT

Two points on the dendritic tree are electrotonically distant
if the electrical interactions between them are minimal,
regardless of the actual physical distance between the points

STRABISMIC CAT A condition in which the eyes are not straight or properly
aligned. The misalignment reflects the failure of the eye
muscles to work together. One eye may turn in (crossed eyes),
turn out (wall eyes), turn up or turn down. Although some
cats are congenitally strabismic, strabismus can also be
achieved by cutting the tendon of one of the eye muscles
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Figure 1. Synthetic computer-generated spike trains with various correlation patterns
Each panel includes a raster plot with 20 simulated spike trains generated simultaneously; each
row corresponds to one artificial neuron and each small vertical line to a spike. All neurons
were set to fire at a mean rate of 27 spikes s−1 and with a CVISI near 1, as for a Poisson process
(the CVISI is equal to the standard deviation of the interspike intervals divided by their mean).
Red traces show instantaneous firing rate or spike density, obtained by smoothing the spike
traces with a Gaussian function (σ = 10 ms for top row; σ = 5 ms for bottom row) and averaging
across neurons. Blue histograms show the average cross-correlation between all possible
distinct pairs of units. Cross-correlograms were computed from 20-s segments of simulated
data, which included the short segments shown. The y axes are proportional to the probability
that two spikes from two different neurons are separated in time by the amount indicated in
the x axis. The normalization is such that the probability expected by chance, assuming
independence, is set to 1. a–c| Each neuron was driven by 1,000 random inputs52 and, on
average, individual pairs of neurons shared 10% (a), 25% (b) or 50% (c) of those inputs. As
the fraction of shared inputs rises, neurons tend to fire closer together in time, which produces
larger fluctuations in the average spike density. d–f| Here, the neurons fired through
independent Poisson processes, but the underlying firing rate was equal to 27(1 + Asin
(2π25t)), where t is the time in seconds, and was identical for all units. So, the mean rate was
still 27 spikes s−1, but it oscillated with a frequency of 25 Hz. The amplitude of the oscillations
was A = 0.25 (d), A = 0.50 (e) or A = 0.75 (f). See REF. 52 for further details.
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Figure 2. Responses of two model neurons to four input correlation patterns
Histograms on the left show average cross-correlations, like those in FIG. 1, between pairs of
excitatory inputs (EE), between pairs of inhibitory inputs (II), and between excitatory–
inhibitory pairs (EI). The y axes in the correlograms extend from 0.7 to 1.4. Red and green
traces correspond to responses of balanced and unbalanced neurons, respectively, always
driven by 160 excitatory and 40 inhibitory inputs. The rate of inhibitory inputs was always 1.7
times the excitatory rate. In the middle traces, all excitatory inputs fired at 42 spikes s−1. In the
plots on the right, the mean firing rate of the excitatory inputs varies along the x axes, and the
y axes correspond to the output firing rates of the two postsynaptic model neurons. All
responses were obtained using leaky integrate-and-fire models (see BOX 1). a| All input spike
trains were independent. In the middle traces, both postsynaptic neurons are shown to fire at
about 30 spikes s− 1. b| Excitatory inputs were synchronous, with 10% shared inputs, as in FIG.
1a. Balanced and unbalanced neurons fired at 67 and 45 spikes s− 1, respectively. c| Inhibitory
inputs oscillated with an amplitude equal to 50% of the mean rate, as in FIG. 1e. Balanced and
unbalanced neurons fired at 59 and 30 spikes s− 1, respectively. d| All inputs were synchronous,
with 10% shared inputs. Balanced and unbalanced neurons fired at 31 and 41 spikes s− 1,
respectively. For comparison, broken lines in the input–output rate plots (b–d) are the curves
obtained with independent inputs (a). The balanced neuron is much more sensitive to
correlations than the unbalanced one.

Salinas and Sejnowski Page 20

Nat Rev Neurosci. Author manuscript; available in PMC 2010 May 13.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Figure 3. Cross-correlation histograms, with and without attention, from pairs of neurons recorded
in the secondary somatosensory cortex of awake monkeys
The y axis indicates the rate of spike coincidences (defined as two spikes within 2.4 ms of each
other) when the spike trains from the two neurons are shifted in time by the amount shown on
the x axis. These correlograms have been normalized so that a zero rate corresponds to
independent spike trains. The three panels correspond to three different pairs. Red traces were
calculated from trials in which the monkey paid attention to a tactile stimulus (the cross on the
table); blue traces were calculated from trials in which the same tactile stimulus was presented,
but the monkey had to pay attention to a visual stimulus on the screen. In the top two examples,
more synchrony was observed when attention was focused on the tactile stimuli; this was the
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more prevalent effect. An example of lower synchrony with attention on the tactile stimulus
— the less frequent effect - is shown in the lower plot. Data modified from REF. 104 and kindly
provided by P. Steinmetz.
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Figure 4. Attention induces changes in synchrony in the visual cortex
Data shown are from experiments in which two visual stimuli were presented, one inside and
one outside the receptive field of a neuron in area V4. In the schematics, the green box
represents the receptive field: this was not presented on the screen in the trials. Red traces
correspond to attention directed inside the receptive field of the recorded neuron; blue traces
correspond to attention directed outside. Stimuli were the same in the two conditions. a and
b| The continuous traces show the stimulus-driven local field potentials (LFPs). The spikes
below were recorded simultaneously from different electrodes. c and d| Spike-triggered
averages (STAs) computed during the stimulus presentation period. The STA corresponds to
the average LFP waveform that is seen at the time of a spike. The y axes indicate the mean
LFP; the x axes indicate time relative to the occurrence of a spike. e| Power spectra of the two
STAs shown in c and d. When attention is focused inside the receptive field, the recorded
neuron tends to fire more in phase with the frequency components around 50 Hz, and less so
with respect to the frequencies around 10 Hz. Data modified from REF. 113 and kindly provided
by P. Fries.
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