Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae

Abstract

Gross chromosome rearrangements (GCRs), such as translocations, deletion of a chromosome arm, interstitial deletions and inversions, are often observed in cancer cells1,2,3. Spontaneous GCRs are rare in Saccharomyces cerevisiae; however, the existence of mutator mutants with increased genome instability suggests that GCRs are actively suppressed4,5. Here we show by genetic analysis that these genome rearrangements probably result from DNA replication errors and are suppressed by at least three interacting pathways or groups of proteins: S-phase checkpoint functions5, recombination proteins4 and proteins that prevent de novo addition of telomeres at double-strand breaks (DSBs). Mutations that inactivate these pathways cause high rates of GCRs and show synergistic interactions, indicating that the pathways that suppress GCRs all compete for the same DNA substrates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways for suppression of genome instability.

Similar content being viewed by others

References

  1. Mitelman, F. Catalog of Chromosome Aberration in Cancer (Wiley Liss, New York, 1991).

    Google Scholar 

  2. Lengauer, C., Kinzler, K. W. & Voelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Padilla-Nash, H. M. et al. Molecular cytogenetic analysis of the bladder carcinoma cell line BK-10 by spectral karyotyping. Genes Chromosom. Cancer 25, 53–59 (1999).

    Article  CAS  Google Scholar 

  4. Chen, C. & Kolodner, R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 81–85 (1999).

    Article  CAS  Google Scholar 

  5. Myung, K., Datta, A. & Kolodner, R. D. Suppression of spontaneous chromosomal rearrangements by the S-phase checkpoint in Saccharomyces cerevisiae. Cell 104, 397–408 (2001).

    Article  CAS  Google Scholar 

  6. Lundblad, V. DNA ends: maintenance of chromosome termini versus repair of double strand breaks. Mut. Res. 451, 227–240 (2000).

    Article  CAS  Google Scholar 

  7. Bryan, T. M. & Cech, T. R. Telomerase and the maintenance of chromosome ends. Curr. Opin. Cell Biol. 11, 318–324 (1999).

    Article  CAS  Google Scholar 

  8. Grandin, N., Reed, S. I. & Charbonneau, M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11, 512–527 (1997).

    Article  CAS  Google Scholar 

  9. Lahaye, A., Stahl, H., Thines-Sempoux, D. & Foury, F. PIF1: a DNA helicase in yeast mitochondria. EMBO J. 10, 997–1007 (1991).

    Article  CAS  Google Scholar 

  10. Schulz, V. & Zakian, V. A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–155 (1994).

    Article  CAS  Google Scholar 

  11. Zhou, J.-Q., Monson, E. K., Teng, S.-C., Schulz, V. P. & Zakian, V. A. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289, 771–774 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Diede, S. J. & Gottschling, D. E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases α and δ. Cell 99, 723–733 (1999).

    Article  CAS  Google Scholar 

  13. Chen, C., Umezu, K. & Kolodner, R. D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2, 9–22 (1998).

    Article  CAS  Google Scholar 

  14. Lee, S. E., Paques, F., Sylvan, J. & Haber, J. E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9, 767–770 (1999).

    Article  CAS  Google Scholar 

  15. Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396 (2001).

    Article  CAS  Google Scholar 

  16. Haber, J. E. Exploring the pathways of homologous recombination. Curr. Opin. Cell Biol. 4, 401–412 (1992).

    Article  CAS  Google Scholar 

  17. Lewis, L. K. & Resnick, M. A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mut. Res. 451, 71–89 (2000).

    Article  CAS  Google Scholar 

  18. Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998).

    Article  CAS  Google Scholar 

  19. Signon, L., Malkova, A., Naylor, M. L., Klein, H. & Haber, J. E. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol. Cell. Biol. 21, 2048–2056 (2001).

    Article  CAS  Google Scholar 

  20. Bai, Y. & Symington, L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10, 2025–2037 (1996).

    Article  CAS  Google Scholar 

  21. Chen, Q., Ijpma, A. & Greider, C. W. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol. Cell. Biol. 21, 1819–1827 (2001).

    Article  CAS  Google Scholar 

  22. Teo, S. H. & Jackson, S. P. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break-repair. EMBO J. 16, 4788–4795 (1997).

    Article  CAS  Google Scholar 

  23. Herrmann, G., Lindahl, T. & Schar, P. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J. 17, 4188–4198 (1998).

    Article  CAS  Google Scholar 

  24. Moore, J. K. & Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 2164–2173 (1996).

    Article  CAS  Google Scholar 

  25. Boulton, S. J. & Jackson, S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).

    Article  CAS  Google Scholar 

  26. Michel, B. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25, 173–178 (2000).

    Article  CAS  Google Scholar 

  27. Vessey, C. J., Norbury, C. J. & Hickson, I. D. Genetic disorders associated with cancer predisposition and genomic instability. Prog. Nucleic Acid Res. Mol. Biol. 63, 189–221 (1999).

    Article  CAS  Google Scholar 

  28. Petrini, J. H. J. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12, 293–296 (2000).

    Article  CAS  Google Scholar 

  29. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001).

    Article  CAS  Google Scholar 

  30. Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: A single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Zakian, S. Lee, J. Haber, V. Lundblad, L. Symington and M. Charbonneau for plasmids and helpful discussions; P. Lau and K. Schmidt for comments on the manuscript; and J. Weger and J. Green for DNA sequencing. This work was supported by a NIH grant to R.D.K. and a Damon Runyon-Walter Winchell Foundation Postdoctoral Fellowship to K.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Kolodner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myung, K., Chen, C. & Kolodner, R. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073–1076 (2001). https://doi.org/10.1038/35082608

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35082608

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing