Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Programmed cell death, mitochondria and the plant hypersensitive response

Abstract

The plant response to attempted infection by microbial pathogens is often accompanied by rapid cell death in and around the initial infection site, a reaction known as the hypersensitive response. This response is associated with restricted pathogen growth and represents a form of programmed cell death (PCD). Recent pharmacological and molecular studies have provided functional evidence for the conservation of some of the basic regulatory mechanisms underlying the response to pathogens and the activation of PCD in animal and plant systems. In animals, the mitochondrion integrates diverse cellular stress signals and initiates the death execution pathway, and studies indicate a similar involvement for mitochondria in regulating PCD in plants. But many of the cell-death regulators that have been characterized in humans, worms and flies are absent from the Arabidopsis genome, indicating that plants probably use other regulators to control this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tobacco mosaic virus/N gene interaction: a classic hypersensitive response (HR) model system.
Figure 2: The death signal pathway through the mitochondrion.
Figure 3: Structural analysis of BI-1-related proteins in the Arabidopsis genome.

Similar content being viewed by others

References

  1. Feys, B. J. & Parker, J. E. Interplay of signaling pathways in plant disease resistance. Trends Genet. 16, 449–455 (2000).

    Article  CAS  Google Scholar 

  2. Baker, B., Zambryski, P., Staskawicz, B. & Dinesh-Kumer, S. P. Signaling in plant-microbe interactions. Science 276, 726–733 (1997).

    Article  CAS  Google Scholar 

  3. Morel, J.-B. & Dangl, J. The hypersensitive response and the induction of cell death in plants. Cell Death Differ. 4, 671–683 (1997).

    Article  CAS  Google Scholar 

  4. Heath, M. C. Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol. 3, 315–319 (2000).

    Article  CAS  Google Scholar 

  5. Heath, M. C. Hypersensitive response-related death. Plant Mol. Biol. 44, 321–334 (2000).

    Article  CAS  Google Scholar 

  6. Dinesh-Kumar, S. P., Tham, W.-H. & Baker, B. Structure-function analysis of the tobacco mosaic virus resistance gene N . Proc. Natl Acad. Sci. USA 97, 14789–14794 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Erickson, F. L. et al. The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J. 18, 67–75 (1999).

    Article  CAS  Google Scholar 

  8. White, E. Life, death, and the pursuit of apoptosis. Genes Dev. 10, 1–15 (1996).

    Article  CAS  Google Scholar 

  9. Clem, R. J., Hardwick, J. M. & Miller, L. K. Anti-apoptotic genes of baculoviruses. Cell Death Differ. 3, 9–16 (1996).

    CAS  PubMed  Google Scholar 

  10. Green, D. R. Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1–4 (2000).

    Article  CAS  Google Scholar 

  11. Uren, A. G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967 (2000).

    CAS  PubMed  Google Scholar 

  12. Shirasu, K. & Schulze-Lefert, P. Regulators of cell death in disease resistance. Plant Mol. Biol. 44, 371–385 (2000).

    Article  CAS  Google Scholar 

  13. Hammond-Kosack, K. E., Silverman, P., Raskin, I. & Jones, J. D. G. Race-specific elicitors of Cladosporium fulvum induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants carrying the corresponding Cf disease resistance gene. Plant Physiol. 110, 1381–1394 (1996).

    Article  CAS  Google Scholar 

  14. Clough, S. J. et al. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 97, 9323–9328 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Bendahmane, A., Kanyuka, K. & Baulcombe, D. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–791 (1999).

    Article  CAS  Google Scholar 

  16. Govrin, E. M. & Levine, A. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea . Curr. Biol. 10, 751–757 (2000).

    Article  CAS  Google Scholar 

  17. Navarre, W. W. & Zychlinsky, A. Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell Microbiol. 2, 265–273 (2000).

    Article  CAS  Google Scholar 

  18. Ferri, K. F. & Kroemer, G. Mitochondria - the suicide organelles. BioEssays 23, 111–115 (2001).

    Article  CAS  Google Scholar 

  19. Vander Heiden, M. G. et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl Acad. Sci. USA 97, 4666–4671 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Blackstone, N. W. & Green, D. R. The evolution of a mechanism of cell suicide. BioEssays 21, 84–88 (1999).

    Article  CAS  Google Scholar 

  23. Lam, E., Pontier, D. & del Pozo, O. Die and let live - programmed cell death in plants. Curr. Opin. Plant Biol. 2, 502–507 (1999).

    Article  CAS  Google Scholar 

  24. Xie, Z. & Chen, Z. Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol. Plant-Microbe Interact. 13, 183–190 (2000).

    Article  CAS  Google Scholar 

  25. Lacomme, C. & Santa Cruz, S. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl Acad. Sci. USA 96, 7956–7961 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Chivasa, S. & Carr, J. Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. Plant Cell 10, 1489–1498 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maxwell, D. P., Wang, Y. & McIntosh, L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl Acad. Sci. USA 96, 8271–8276 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Simons, B. H., Millenaar, F. F., Mulder, L., Van Loon, L. C. & Lambers, H. Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv. tomato . Plant Physiol. 20, 529–538 (1999).

    Article  Google Scholar 

  29. Keller, T. et al. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10, 255–266 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Torres, M. A. et al. Six Arabidopsis homologues of the human respiratory burst oxidase (gp91phox). Plant J. 14, 365–370 (1998).

    Article  CAS  Google Scholar 

  31. Seo, S. et al. Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive response. Plant Cell 12, 917–932 (2000).

    Article  CAS  Google Scholar 

  32. Wilson, I., Vogel, J. & Somerville, S. Signalling pathways: a common theme in plants and animals? Curr. Biol. 7, R175–R178 (1997).

    Article  CAS  Google Scholar 

  33. van der Biezen, E. A. & Jones, J. D. G. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8, R226–R227 (1998).

    Article  CAS  Google Scholar 

  34. Aravind, L., Dixit, V. M. & Koonin, E. V. The domains of death: evolution of the apoptosis machinery. Trends Biochem. Sci. 24, 47–53 (1999).

    Article  CAS  Google Scholar 

  35. Zhang, Y., Fan, W., Kinkema, M., Li, X. & Dong, X. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl Acad. Sci. USA 96, 6523–6528 (1999).

    Article  ADS  CAS  Google Scholar 

  36. Zhou, J.-M. et al. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant-Microbe Interact. 13, 191–219 (2000).

    Article  CAS  Google Scholar 

  37. Depres, D., DeLong, C., Glaze, S., Liu, E. & Fobert, P. R. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12, 279–290 (2000).

    Article  Google Scholar 

  38. Daniel, X., Lacomme, C., Morel, J. B. & Roby, D. A novel myb oncogene homologue in Arabidopsis thaliana related to hypersensitive cell death. Plant J. 20, 57–66 (1999).

    Article  CAS  Google Scholar 

  39. Mayda, E., Tornero, P., Conejero, V. & Vera, P. A tomato homeobox gene (HD-zip) is involved in limiting the spread of programmed cell death. Plant J. 20, 591–600 (1999).

    Article  CAS  Google Scholar 

  40. Euglem, T., Rushton, P. J., Robatzek, S. & Somssich, I. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206 (2000).

    Article  Google Scholar 

  41. Maleck, K. et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26, 403–410 (2000).

    Article  CAS  Google Scholar 

  42. Kawasaki, T. et al. The small GTP-binding protein Rac is a regulator of cell death in plants. Proc. Natl Acad. Sci. USA 96, 10922–10926 (1999).

    Article  ADS  CAS  Google Scholar 

  43. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341 (1998).

    Article  CAS  Google Scholar 

  44. del Pozo, O. & Lam, E. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol. 8, 1129–1132 (1998).

    Article  CAS  Google Scholar 

  45. Korthout, H. A. A. J., Berecki, G., Bruin, W., van Duijn, B. & Wang, M. The presence and subcellular localization of caspase 3-like proteinases in plant cells. FEBS Lett. 475, 139–144 (2000).

    Article  CAS  Google Scholar 

  46. Jabs, T., Dietrich, R. A. & Dangl, J. L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273, 1853–1856 (1996).

    Article  ADS  CAS  Google Scholar 

  47. Johnson, D. E. Noncaspase proteases in apoptosis. Leukemia 9, 1695–1703 (2000).

    Article  Google Scholar 

  48. Solomon, M., Belenghi, B., Delledonne, M., Menachem, E. & Levine, A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11, 431–444 (1999).

    Article  CAS  Google Scholar 

  49. Aravind, L., Dixit, V. M. & Koonin, E. V. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291, 1279–1284 (2001).

    Article  ADS  CAS  Google Scholar 

  50. Zha, H. et al. Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell. Biol. 16, 6494–6508 (1996).

    Article  CAS  Google Scholar 

  51. Mitsuhara, I., Malik, K. A., Miura, M. & Ohashi, Y. Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Curr. Biol. 9, 775–778 (1999).

    Article  CAS  Google Scholar 

  52. Xu, Q. & Reed, J. C. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol. Cell 1, 337–346 (1998).

    Article  CAS  Google Scholar 

  53. Kawai, M., Pan, L., Reed., J. C. & Uchimiya, H. Evolutionally conserved plant homologues of the Bax Inhibitor-1 (BH-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett. 464, 143–147 (1999).

    Article  CAS  Google Scholar 

  54. Sanchez, P., de Torres Zabela, M. & Grant, M. AtBI-1, a plant homologue of Bax inhibitor-1, suppresses Bax-induced cell death in yeast and is rapidly upregulated during wounding and pathogen challenge. Plant J. 21, 393–399 (2000).

    Article  CAS  Google Scholar 

  55. Devoto, A. et al. Topology, subcellular localization and sequence diversity of the Mlo family in plants. J. Biol. Chem. 274, 34993–35004 (1999).

    Article  CAS  Google Scholar 

  56. Clarke, A., Desikan, R., Hurst, R. D Hancock, J. T. & Neill, S. J. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 24, 667–677 (2000).

    Article  CAS  Google Scholar 

  57. Mittler, R. Shulaev, V. & Lam, E. Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7, 29–42 (1995).

    Article  CAS  Google Scholar 

  58. Kampranis, S. C. et al. A novel plant glutathione S-transferase:peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275, 29207–29216 (2000).

    Article  CAS  Google Scholar 

  59. Harris, M. H., Vander Heiden, M. G., Kron, S. J. & Thompson, C. B. Role of oxidative phosphorylation in Bax toxicity. Mol. Cell. Biol. 20, 3590–3596 (2000).

    Article  CAS  Google Scholar 

  60. Gottlieb, E., Vander Heiden, M. G. & Thompson, C. B. Bcl-xL prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol. Cell. Biol. 20, 5680–5689 (2000).

    Article  CAS  Google Scholar 

  61. Smith, N. A. et al. Total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320 (2000).

    Article  ADS  CAS  Google Scholar 

  62. McCabe, P. F., Levine, A, Meijer, P.-J., Tapon, N. A. & Pennell, R. I. A programmed cell death pathway activated in carrot cells at low density. Plant J. 12, 267–280 (1997).

    Article  CAS  Google Scholar 

  63. Gao, M. & Showalter, A. M. Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J. 19, 321–331 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in the Lam and Lawton laboratories is supported by the New Jersey Commission on Science and Technology. Research on plant cell death in the Lam laboratory is supported by competitive grants from the USDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, E., Kato, N. & Lawton, M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848–853 (2001). https://doi.org/10.1038/35081184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35081184

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing