Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Natural products and plant disease resistance

Abstract

Plants elaborate a vast array of natural products, many of which have evolved to confer selective advantage against microbial attack. Recent advances in molecular technology, aided by the enormous power of large-scale genomics initiatives, are leading to a more complete understanding of the enzymatic machinery that underlies the often complex pathways of plant natural product biosynthesis. Meanwhile, genetic and reverse genetic approaches are providing evidence for the importance of natural products in host defence. Metabolic engineering of natural product pathways is now a feasible strategy for enhancement of plant disease resistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical diversity of constitutive and inducible antimicrobial plant natural products.
Figure 2: Metabolic engineering for improved fungal disease resistance in alfalfa.
Figure 3: Biosynthetic relationships between antimicrobial plant natural products.
Figure 4: A genomics approach to understanding and manipulating complex natural product pathways for plant defence.

Similar content being viewed by others

References

  1. Cooper, R. M. et al. Detection and cellular localization of elemental sulphur in disease-resistant genotypes of Theobroma cacao . Nature 379, 159–162 (1996).

    Article  ADS  CAS  Google Scholar 

  2. VanEtten, H. D., Matthews, D. E. & Matthews, P. S. Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu. Rev. Phytopathol. 27, 143–164 (1989).

    Article  CAS  Google Scholar 

  3. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408, 796–815 (2000).

  4. Bell, C. et al. The Medicago genome initiative: a model legume database. Nucleic Acids Res. 29, 114–117 (2001).

    Article  CAS  Google Scholar 

  5. Pichersky, E. & Gang, D. R. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci. 5, 439–445 (2000).

    Article  CAS  Google Scholar 

  6. Grayer, R. J. & Harborne, J. B. A survey of antifungal compounds from higher plants. Phytochemistry 37, 19–42 (1994).

    Article  CAS  Google Scholar 

  7. Harborne, J. B. The comparative biochemistry of phytoalexin induction in plants. Biochem. System. Ecol. 27, 335–367 (1999).

    Article  CAS  Google Scholar 

  8. Hammerschmidt, R. Phytoalexins: what have we learned after 60 years? Annu. Rev. Phytopathol. 37, 285–306 (1999).

    Article  CAS  Google Scholar 

  9. Mansfield, J. W. in Mechanisms of Resistance to Plant Diseases (eds Slusarenko, A., Fraser, R. S. S. & van Loon, L. C.) 325–370 (Kluwer, Dordrecht, 2000).

    Book  Google Scholar 

  10. VanEtten, H., Mansfield, J. W., Bailey, J. A. & Farmer, E. E. Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6, 1191–1192 (1994).

    Article  CAS  Google Scholar 

  11. Kodama, O., Suzuki, T., Miyakawa, J. & Akatsuka, T. Ultraviolet-induced accumulation of phytoalexins in rice leaves. Agric. Biol. Chem. 52, 2469–2473 (1988).

    CAS  Google Scholar 

  12. Pierce, M. L., Cover, E. C., Richardson, P. E., Scholes, V. E. & Essenberg, M. Adequacy of cellular phytoalexin concentrations in hypersensitively responding cotton leaves. Physiol. Mol. Plant Pathol. 48, 305–324 (1996).

    Article  CAS  Google Scholar 

  13. Bowyer, P., Clarke, B. R., Lunness, P., Daniels, M. J. & Osbourn, A. E. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267, 371–374 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Enkerli, J., Bhatt, G. & Covert, S. F. Maackiain detoxification contributes to the virulence of Nectria haematococca MP VI on chickpea. Mol. Plant-Microbe Interact. 11, 317–326 (1998).

    Article  CAS  Google Scholar 

  15. Frey, M. et al. Analysis of a chemical plant defense mechanism in grasses. Science 277, 696–699 (1997).

    Article  CAS  Google Scholar 

  16. Papadopoulou, K., Melton, R. E., Leggett, M., Daniels, M. J. & Osbourn, A. E. Compromised disease resistance in saponin-deficient plants. Proc. Natl Acad. Sci. USA 96, 12923–12928 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Glazebrook, J. & Ausubel, F. M. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl Acad. Sci. USA 91, 8955–8959 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Glazebrook, J. et al. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146, 381–392 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, N., Tootle, T. L. & Glazebrook, J. Arabidopsis pad3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11, 2419–2428 (1999).

    Article  CAS  Google Scholar 

  20. Thomma, B. P. H. J., Nelissen, I., Eggermont, K. & Broekaert, W. F. Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicola . Plant J. 19, 163–171 (1999).

    Article  CAS  Google Scholar 

  21. Hipskind, J. D. & Paiva, N. L. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis . Mol. Plant-Microbe Interact. 13, 551–562 (2000).

    Article  CAS  Google Scholar 

  22. He, X.-Z. & Dixon, R. A. Genetic manipulation of isoflavone 7-O-methyltransferase enhances the biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12, 1689–1702 (2000).

    Article  CAS  Google Scholar 

  23. Steele, C. L., Gijzen, M., Qutob, D. & Dixon, R. A. Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch. Biochem. Biophys. 367, 147–150 (1999).

    Article  Google Scholar 

  24. Jung, W. et al. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotechnol. 18, 208–212 (2000).

    Article  CAS  Google Scholar 

  25. Crock, J., Wildung, M. & Croteau, R. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha × piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene. Proc. Natl Acad. Sci. USA 94, 12833–12838 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Lange, B. M., Wildung, M. R., McCaskill, D. & Croteau, R. A novel family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl Acad. Sci. USA 95, 2100–2104 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Holton, T. A. & Cornish, E. C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7, 1071–1083 (1995).

    Article  CAS  Google Scholar 

  28. Dixon, R. A., Harrison, M. J. & Paiva, N. L. The isoflavonoid phytoalexin pathway: from enzymes to genes to transcription factors. Physiol. Plant. 93, 385–392 (1995).

    Article  CAS  Google Scholar 

  29. Bohlmann, J., Meyer-Gauen, G. & Croteau, R. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc. Natl Acad. Sci. USA 95, 4126–4133 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Chapple, C. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 311–343 (1998).

    Article  CAS  Google Scholar 

  31. Ibrahim, R. K., Bruneau, A. & Bantignies, B. Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol. Biol. 36, 1–10 (1998).

    Article  CAS  Google Scholar 

  32. Schröder, J. A family of plant-specific polyketide synthases: facts and predictions. Trends Plant Sci. 2, 373–378 (1997).

    Article  Google Scholar 

  33. Li, A. X. & Steffens, J. C. An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc. Natl Acad. Sci. USA 97, 6902–6907 (2000).

    Article  ADS  CAS  Google Scholar 

  34. Lehfeldt, C. et al. Cloning of the SNG1 gene of arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12, 1295–1306 (2000).

    Article  CAS  Google Scholar 

  35. Hrazdina, G. & Jensen, R. A. Spatial organization of enzymes in plant metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 241–267 (1992).

    Article  CAS  Google Scholar 

  36. Winkel-Shirley, B. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol. Plant. 107, 142–149 (1999).

    Article  CAS  Google Scholar 

  37. Snyder, B. A. & Nicholson, R. L. Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248, 1637–1639 (1990).

    Article  ADS  CAS  Google Scholar 

  38. van der Fits, L. & Memelink, J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289, 295–297 (2000).

    Article  ADS  CAS  Google Scholar 

  39. Borewitz, J., Xia, Y., Blount, J. W., Dixon, R. A. & Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2393 (2001).

    Article  Google Scholar 

  40. Maloney, A. P. & VanEtten, H. D. A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol. Gen. Genet. 243, 506–514 (1994).

    Article  CAS  Google Scholar 

  41. Starks, C. M., Back, K., Chappell, J. & Noel, J. P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815–1820 (1997).

    Article  CAS  Google Scholar 

  42. Jez, J. M., Bowman, M. E., Dixon, R. A. & Noel, J. P. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nature Struct. Biol. 7, 786–791 (2000).

    Article  CAS  Google Scholar 

  43. Zubieta, C., Dixon, R. A. & Noel, J. P. Crystal structures of chalcone O-methyltransferase and isoflavone O-methyltransferase reveal the structural basis for substrate specificity in plant O-methyltransferases. Nature Struct. Biol. 8, 271–279 (2001).

    Article  CAS  Google Scholar 

  44. Jez, J. M. et al. Structural control of polyketide formation in plant-specific polyketide synthesis. Chem. Biol. 7, 919–930 (2000).

    Article  CAS  Google Scholar 

  45. Frick, S., Ounaroon, A. & Kutchan, T. M. Combinatorial biochemistry in plants: the case of O-methyltransferases. Phytochemistry 56, 1–4 (2001).

    Article  CAS  Google Scholar 

  46. Muller, K. O. & Borger, H. Experimentelle Untersuchungen uber die Phytophthora-Resistenz der Kartoffel- zugleich ein Bewitrag zum Problem der “erworbenen Resistenz” im Pflanzenreich. Arb. Biol. Anst. Reichsanst (Berl) 23, 189–231 (1940).

    Google Scholar 

  47. Dixon, R. A., Harrison, M. J. & Lamb, C. J. Early events in the activation of plant defense responses. Annu. Rev. Phytopathol. 32, 479–501 (1994).

    Article  CAS  Google Scholar 

  48. Nurnberger, T. Signal perception in plant pathogen defense. Cell. Mol. Life Sci. 55, 167–182 (1999).

    Article  CAS  Google Scholar 

  49. Weigel, D. et al. Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1013 (2000).

    Article  CAS  Google Scholar 

  50. Trethewey, R. N., Krotzky, A. J. & Willmitzer, L. Metabolic profiling: a Rosetta Stone for genomics? Curr. Opin. Plant Biol. 2, 83–85 (1999).

    Article  CAS  Google Scholar 

  51. Fiehn, O. et al. Metabolite profiling for plant functional genomics. Nature Biotechnol. 18, 1157–1161 (2000).

    Article  CAS  Google Scholar 

  52. Kehoe, D. M., Villand, P. & Somerville, S. DNA microarrays for studies of higher plants and other photosynthetic organisms. Trends Plant Sci. 4, 38–41 (1999).

    Article  CAS  Google Scholar 

  53. Yates, J. R. III Mass spectrometry and the age of the proteome. J. Mass. Spectrom. 33, 1–19 (1998).

    Article  ADS  CAS  Google Scholar 

  54. Smith, R.D. Probing proteomes - seeing the whole picture. Nature Biotechnol. 18, 1041–1042 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, R. Natural products and plant disease resistance. Nature 411, 843–847 (2001). https://doi.org/10.1038/35081178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35081178

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing