Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Supercooled liquids and the glass transition

Abstract

Glasses are disordered materials that lack the periodicity of crystals but behave mechanically like solids. The most common way of making a glass is by cooling a viscous liquid fast enough to avoid crystallization. Although this route to the vitreous state — supercooling — has been known for millennia, the molecular processes by which liquids acquire amorphous rigidity upon cooling are not fully understood. Here we discuss current theoretical knowledge of the manner in which intermolecular forces give rise to complex behaviour in supercooled liquids and glasses. An intriguing aspect of this behaviour is the apparent connection between dynamics and thermodynamics. The multidimensional potential energy surface as a function of particle coordinates (the energy landscape) offers a convenient viewpoint for the analysis and interpretation of supercooling and glass-formation phenomena. That much of this analysis is at present largely qualitative reflects the fact that precise computations of how viscous liquids sample their landscape have become possible only recently.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of a liquid's volume v or enthalpy h at constant pressure.
Figure 2: Tg-scaled Arrhenius representation of liquid viscosities showing Angell's strong–fragile pattern.
Figure 3: Temperature dependence of the peak dielectric relaxation frequency of the glass-forming mixture chlorobenzene/cis-decalin (molar ratio 17.2/82.8%).
Figure 4: Temperature dependence of the entropy difference between several supercooled liquids and their stable crystals at atmospheric pressure.
Figure 5: Schematic illustration of an energy landscape.
Figure 6: Mean inherent structure energy per particle of a binary mixture of unequal-sized Lennard–Jones atoms, as a function of the temperature of the equilibrated liquid from which the inherent structures were generated by energy minimization.
Figure 7: Relationship between diffusivity (D) and configurational entropy (Sconf) of supercooled water79 at six different temperatures.
Figure 8: Schematic representation of the energy landscapes of strong and fragile substances.
Figure 9: Evolution of the self-intermediate scattering function for A-type atoms for the same supercooled Lennard–Jones mixture as in Fig. 6, at q σAA = 7.251, corresponding to the first peak of the static structure factor of species A (ref. 92).

Similar content being viewed by others

References

  1. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Blanshard, J. M. V. & Lillford, P. (eds) The Glassy State in Foods (Nottingham Univ. Press, Nottingham, 1993).

    Google Scholar 

  3. Crowe, J. H., Carpenter, J. F. & Crowe, L. M. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60, 73–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Debenedetti, P. G., Stillinger, F. H., Truskett, T. M. & Lewis, C. P. Theory of supercooled liquids and glasses: energy landscape and statistical geometry perspectives. Adv. Chem. Eng. (in the press).

  5. Greer, A. L. Metallic glasses. Science 267, 1947–1953 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jenniskens, P. & Blake, D. F. Structural transitions in amorphous water ice and astrophysical implications. Science 265, 753–756 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Anderson, P. W. Through a glass lightly. Science 267, 1615 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Debenedetti, P. G. Metastable Liquids. Concepts and Principles (Princeton Univ. Press, Princeton, 1996).

    Google Scholar 

  10. Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 10, 473–488 (1969).

    Article  ADS  CAS  Google Scholar 

  11. Angell, C. A. Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J. Non-Cryst. Solids 102, 205–221 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Moynihan, C. T. et al. in The Glass Transition and the Nature of the Glassy State (eds Goldstein, M. & Simha, R.) Ann. NY Acad. Sci. 279, 15–36 (1976).

    Google Scholar 

  13. Brüning, R. & Samwer, K. Glass transition on long time scales. Phys. Rev. B 46, 318–322 (1992).

    Article  Google Scholar 

  14. Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    Article  CAS  Google Scholar 

  15. Vogel, H. Das temperatur-abhängigkeitsgesetz der viskosität von flüssigkeiten. Phys. Zeit. 22, 645–646 (1921).

    CAS  Google Scholar 

  16. Tammann, G. & Hesse, W. Die abhängigkeit der viskosität von der temperatur bei unterkühlten flüssigkeiten. Z. Anorg. Allg. Chem. 156, 245–257 (1926).

    Article  CAS  Google Scholar 

  17. Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).

    Article  CAS  Google Scholar 

  18. Laughlin, W. T. & Uhlmann, D. R. Viscous flow in simple organic liquids. J. Phys. Chem. 76, 2317–2325 (1972).

    Article  CAS  Google Scholar 

  19. Angell, C. A. in Relaxations in Complex Systems (eds Ngai, K. & Wright, G. B.) 1 (Natl Technol. Inform. Ser., US Dept. of Commerce, Springfield, VA, 1985).

    Google Scholar 

  20. Angell, C. A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13–31 (1991).

    Article  ADS  Google Scholar 

  21. Green, J. L., Ito, K., Xu, K. & Angell, C. A. Fragility in liquids and polymers: new, simple quantifications and interpretations. J. Phys. Chem. B 103, 3991–3996 (1999).

    Article  CAS  Google Scholar 

  22. Novikov, V. N., Rössler, E., Malinovsky, V. K. & Surovstev, N. V. Strong and fragile liquids in percolation approach to the glass transition. Europhys. Lett. 35, 289–294 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Fujimori, H. & Oguni, M. Correlation index (Tgα−Tgβ)/Tgα and activation energy ratio Δɛaα/Δɛaβ as parameters characterizing the structure of liquid and glass. Solid State Commun. 94, 157–162 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Kivelson, D., Tarjus, G., Zhao, X. & Kivelson, S. A. Fitting of viscosity: distinguishing the temperature dependencies predicted by various models of supercooled liquids. Phys. Rev. E 53, 751–758 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Cummins, H. Z. Comment on “Fitting of viscosity: distinguishing the temperature dependencies predicted by various models of supercooled liquids”. Phys. Rev. E 54, 5870–5872 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Kohlrausch, R. Theorie des elektrischen rückstandes in der leidener flasche. Ann. Phys. Chem. (Leipzig) 91, 179–214 (1874).

    Google Scholar 

  27. Williams, G. & Watts, D. C. Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970).

    Article  CAS  Google Scholar 

  28. Richert, R. & Blumen, A. in Disorder Effects on Relaxational Processes (eds Richert, R. & Blumen, A.) 1–7 (Springer, Berlin, 1994).

    Book  Google Scholar 

  29. Cicerone, M. T. & Ediger, M. D. Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl. J. Chem. Phys. 103, 5684–5692 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Cicerone, M. T. & Ediger, M. D. Enhanced translation of probe molecules in supercooled o-terphenyl: signature of spatially heterogeneous dynamics? J. Chem. Phys. 104, 7210–7218 (1996).

    Article  ADS  CAS  Google Scholar 

  31. Mel'cuk, A. I., Ramos, R. A., Gould, H., Klein, W. & Mountain, R. D. Long-lived structures in fragile glass-forming liquids. Phys. Rev. Lett. 75, 2522–2525 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Hurley, M. M. & Harrowell, P. Non-gaussian behavior and the dynamical complexity of particle motion in a dense two-dimensional liquid. J. Chem. Phys. 105, 10521–10526 (1996).

    Article  ADS  CAS  Google Scholar 

  33. Perera, D. N. & Harrowell, P. Measuring diffusion in supercooled liquids: the effect of kinetic inhomogeneities. J. Chem. Phys. 104, 2369–2375 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Perera, D. N. & Harrowell, P. Consequence of kinetic inhomogeneities in glasses. Phys. Rev. E 54, 1652–1662 (1996).

    Article  ADS  CAS  Google Scholar 

  35. Donati, C., Glotzer, S. C., Poole, P. H., Kob, W. & Plimpton, S. J. Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. Phys. Rev. E 60, 3107–3119 (1999).

    Article  ADS  CAS  Google Scholar 

  36. Böhmer, R., Hinze, G., Diezemann, G., Geil, B. & Sillescu, H. Dynamic heterogeneity on supercooled ortho-terphenyl studied by multidimensional deuteron NMR. Europhys. Lett. 36, 55–60 (1996).

    Article  ADS  Google Scholar 

  37. Wang, C.-Y. & Ediger, M. D. How long do regions of different dynamics persist in supercooled o-terphenyl? J. Phys. Chem. B 103, 4177–4184 (1999).

    Article  CAS  Google Scholar 

  38. Vidal Russell, E. & Israeloff, N. E. Direct observation of molecular cooperativity near the glass transition. Nature 408, 695–698 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Fujara, F., Geil, B., Sillescu, H. H. & Fleischer, G. Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Z. Phys. B Cond. Matt. 88, 195–204 (1992).

    Article  ADS  CAS  Google Scholar 

  41. Johari, G. P. Intrinsic mobility of molecular glasses. J. Chem. Phys. 58, 1766–1770 (1973).

    Article  ADS  CAS  Google Scholar 

  42. Johari, G. P. & Goldstein, M. Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys. 53, 2372–2388 (1970).

    Article  ADS  CAS  Google Scholar 

  43. Rössler, E., Warschewske, U., Eiermann, P., Sokolov, A. P. & Quitmann, D. Indications for a change of transport mechanism in supercooled liquids and the dynamics close and below Tg . J. Non-Cryst. Solids 172–174, 113–125 (1994).

    Article  ADS  Google Scholar 

  44. Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

  46. Simon, F. Über den zustand der unterkühlten flüssigkeiten und glässer. Z. Anorg. Allg. Chem. 203, 219–227 (1931).

    Article  CAS  Google Scholar 

  47. Wolynes, P. G. Aperiodic crystals: biology, chemistry and physics in a fugue with stretto. AIP Conf. Proc. 180, 39–65 (1988).

    Article  ADS  CAS  Google Scholar 

  48. Wolynes, P. G. Entropy crises in glasses and random heteropolymers. J. Res. Natl Inst. Standards Technol. 102, 187–194 (1997).

    Article  CAS  Google Scholar 

  49. Angell, C. A. Landscapes with megabasins: polyamorphism in liquids and biopolymers and the role of nucleation in folding and folding diseases. Physica D 107, 122–142 (1997).

    Article  ADS  CAS  Google Scholar 

  50. Gibbs, J. H. & DiMarzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383 (1958).

    Article  ADS  CAS  Google Scholar 

  51. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article  ADS  CAS  Google Scholar 

  52. Richert, R. & Angell, C. A. Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016–9026 (1998).

    Article  ADS  CAS  Google Scholar 

  53. Williams, M. L., Landel, R. F. & Ferry, J. D. The temperature dependence of the relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955).

    Article  CAS  Google Scholar 

  54. Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    Article  ADS  CAS  Google Scholar 

  55. Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).

    Article  ADS  CAS  Google Scholar 

  56. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Nienhaus, G. U., Müller, J. D., McMahon, B. H. & Frauenfelder, H. Exploring the conformational energy landscape of proteins. Physica D 107, 297–311 (1997).

    Article  ADS  CAS  Google Scholar 

  58. Abkevich, V. I., Gutin, A. M. & Shakhnovich, E. I. Free energy landscape for protein folding kinetics: intermediates, traps, and multiple pathways in theory and lattice model simulations. J. Chem. Phys. 101, 6052–6062 (1994).

    Article  ADS  CAS  Google Scholar 

  59. Saven, J. G., Wang, J. & Wolynes, P. G. Kinetics of protein folding: the dynamics of globally connected rough energy landscapes with biases. J. Chem. Phys. 101, 11037–11043 (1994).

    Article  ADS  CAS  Google Scholar 

  60. Wang, J., Onuchic, J. & Wolynes, P. Statistics of kinetic pathways on biased rough energy landscapes with applications to protein folding. Phys. Rev. Lett. 76, 4861–4864 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Plotkin, S. S., Wang, J. & Wolynes, P. G. Correlated energy landscape model for finite, random heteropolymers. Phys. Rev. E 53, 6271–6296 (1996).

    Article  ADS  CAS  Google Scholar 

  62. Becker, O. M. & Karplus, M. The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J. Chem. Phys. 106, 1495–1517 (1997).

    Article  ADS  CAS  Google Scholar 

  63. Dill, K. A. & Chan, H. S. From Levinthal to pathways and funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Klepeis, J. L., Floudas, C. A., Morikis, D. & Lambris, J. D. Predicting peptide structure using NMR data and deterministic global optimization. J. Comp. Chem. 20, 1354–1370 (1999).

    Article  CAS  Google Scholar 

  65. Lacks, D. J. Localized mechanical instabilities and structural transformations in silica glass under high pressure. Phys. Rev. Lett. 80, 5385–5388 (1998).

    Article  ADS  CAS  Google Scholar 

  66. Malandro, D. L. & Lacks, D. J. Volume dependence of potential energy landscapes in glasses. J. Chem. Phys. 107, 5804–5810 (1997).

    Article  ADS  CAS  Google Scholar 

  67. Malandro, D. L. & Lacks, D. J. Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. J. Chem. Phys. 110, 4593–4601 (1999).

    Article  ADS  CAS  Google Scholar 

  68. Malandro, D. L. & Lacks, D. J. Molecular-level instabilities and enhanced self-diffusion in flowing liquids. Phys. Rev. Lett. 81, 5576–5579 (1998).

    Article  ADS  CAS  Google Scholar 

  69. Schulz, M. Energy landscape, minimum points, and non-Arrhenius behavior of supercooled liquids. Phys. Rev. B 57, 11319–11333 (1998).

    Article  ADS  CAS  Google Scholar 

  70. Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998).

    Article  ADS  CAS  Google Scholar 

  71. Keyes, T. Dependence of supercooled liquid dynamics on elevation in the energy landscape. Phys. Rev. E 59, 3207–3211 (1999).

    Article  ADS  CAS  Google Scholar 

  72. Debenedetti, P. G., Stillinger, F. H., Truskett, T. M. & Roberts, C. J. The equation of state of an energy landscape. J. Phys. Chem. B 103, 7390–7397 (1999).

    Article  CAS  Google Scholar 

  73. Jonsson, H. & Andersen, H. C. Icosahedral ordering in the Lennard-Jones crystal and glass. Phys. Rev. Lett. 60, 2295–2298 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Angelani, L., Di Leonardo, R., Ruocco, G., Scala, A. & Sciortino, F. Saddles in the energy landscape probed by supercooled liquids. Phys. Rev. Lett. 85, 5356–5359 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Stillinger, F. H., Debenedetti, P. G. & Sastry, S. Resolving vibrational and structural contributions to isothermal compressibility. J. Chem. Phys. 109, 3983–3988 (1998).

    Article  ADS  CAS  Google Scholar 

  76. Stillinger, F. H. & Debenedetti, P. G. Distinguishing vibrational and structural equilibration contributions to thermal expansion. J. Phys. Chem. B 103, 4052–4059 (1999).

    Article  CAS  Google Scholar 

  77. Sciortino, F., Kob, W. & Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett. 83, 3214–3217 (1999).

    Article  ADS  CAS  Google Scholar 

  78. Büchner, S. & Heuer, A. Potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects. Phys. Rev. E 60, 6507–6518 (1999).

    Article  ADS  Google Scholar 

  79. Scala, A., Starr, F. W., La Nave, E., Sciortino, F. & Stanley, H. E. Configurational entropy and diffusivity in supercooled water. Nature 406, 166–169 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Prielmeier, F. X., Lang, E. W., Speedy, R. J. & Lüdemann, H.-D. Diffusion in supercooled water to 300 Mpa. Phys. Rev. Lett. 59, 1128–1131 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Mackenzie, J. D. Viscosity-temperature relationship for network liquids. J. Am. Ceram. Soc. 44, 598–601 (1961).

    Article  CAS  Google Scholar 

  82. Greet, R. J. & Turnbull, D. Glass transition in o-terphenyl. J. Chem. Phys. 46, 1243–1251 (1967).

    Article  ADS  CAS  Google Scholar 

  83. Stillinger, F. H. & Hodgdon, J. A. Translation-rotation paradox for diffusion in fragile glass-forming liquids. Phys. Rev. E 50, 2064–2068 (1994).

    Article  ADS  CAS  Google Scholar 

  84. Tarjus, G. & Kivelson, D. Breakdown of the Stokes-Einstein relation in supercooled liquids. J. Chem. Phys. 103, 3071–3073 (1995).

    Article  ADS  CAS  Google Scholar 

  85. Liu, C. Z.-W. & Openheim, I. Enhanced diffusion upon approaching the kinetic glass transition. Phys. Rev. E 53, 799–802 (1996).

    Article  ADS  CAS  Google Scholar 

  86. Geszti, T. Pre-vitrification by viscosity feedback. J. Phys. C 16, 5805–5814 (1983).

    Article  ADS  CAS  Google Scholar 

  87. Bengtzelius, U., Götze, W. & Sjölander, A. Dynamics of supercooled liquids and the glass transition. J. Phys. C 17, 5915–5934 (1984).

    Article  ADS  CAS  Google Scholar 

  88. Götze, W. & Sjögren, L. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992).

    Article  ADS  Google Scholar 

  89. Götze, W. & Sjögren, L. The mode coupling theory of structural relaxations. Transp. Theory Stat. Phys. 24, 801–853 (1995).

    Article  ADS  MATH  Google Scholar 

  90. Götze, W. Recent tests of the mode-coupling theory for glassy dynamics. J. Phys. Cond. Matt. 11, A1–A45 (1999).

    Article  ADS  Google Scholar 

  91. Kob, W. Computer simulations of supercooled liquids and glasses. J. Phys. Cond. Matt. 11, R85–R115 (1999).

  92. Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: the van Hove correlation function. Phys. Rev. E 51, 4626–4641 (1995).

    Article  ADS  CAS  Google Scholar 

  93. Kivelson, D., Kivelson, S. A., Zhao, X., Nussinov, Z. & Tarjus, G. A thermodynamic theory of supercooled liquids. Physica A 219, 27–38 (1995).

    Article  ADS  CAS  Google Scholar 

  94. Kivelson, D. & Tarjus, G. SuperArrhenius character of supercooled glass-forming liquids. J. Non-Cryst. Solids 235–237, 86–100 (1998).

    Article  ADS  Google Scholar 

  95. Kivelson, D. & Tarjus, G. The Kauzmann paradox interpreted via the theory of frustration-limited domains. J. Chem. Phys. 109, 5481–5486 (1998).

    Article  ADS  CAS  Google Scholar 

  96. Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409, 164–167 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Speedy, R. J. Relations between a liquid and its glasses. J. Phys. Chem. B 103, 4060–4065 (1999).

    Article  CAS  Google Scholar 

  98. Keyes, T. Instantaneous normal mode approach to liquid state dynamics. J. Phys. Chem. A 101, 2921–2930 (1997).

    Article  CAS  Google Scholar 

  99. Kirkpatrick, T. R. & Wolynes, P. G. Stable and metastable states in mean-field Potts and structural glasses. Phys. Rev. B 36, 8552–8564 (1987).

    Article  ADS  CAS  Google Scholar 

  100. Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).

    Article  ADS  CAS  Google Scholar 

  101. Mézard, M. & Parisi, G. Thermodynamics of glasses: a first principles computation. Phys. Rev. Lett. 82, 747–750 (1999).

    Article  ADS  Google Scholar 

  102. Berendsen, H. J., Grigera, J. R. & Stroatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  103. Stillinger, F. H. Supercooled liquids, glass transitions, and the Kauzmann paradox. J. Chem. Phys. 88, 7818–7825 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  104. Santen, L. & Krauth, W. Absence of thermodynamic phase transition in a model glass former. Nature 405, 550–551 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Wilks, J. The Properties of Liquid and Solid Helium (Clarendon, Oxford, 1967).

    Google Scholar 

  106. Rastogi, S., Höhne, G. W. H. & Keller, A. Unusual pressure-induced phase behavior in crystalline Poly(4-methylpentene-1): calorimetric and spectroscopic results and further implications. Macromolecules 32, 8897–8909 (1999).

    Article  ADS  CAS  Google Scholar 

  107. Greer, A. L. Too hot to melt. Nature 404, 134–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Stillinger, F. H. Exponential multiplicity of inherent structures. Phys. Rev. E 59, 48–51 (1999).

    Article  ADS  CAS  Google Scholar 

  109. Stillinger, F. H. Enumeration of isobaric inherent structures for the fragile glass former o-terphenyl. J. Phys. Chem. B 102, 2807–2810 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.G.D.'s work is supported by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debenedetti, P., Stillinger, F. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001). https://doi.org/10.1038/35065704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065704

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing