Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Untangling the ErbB signalling network

Key Points

  • The four ErbB receptors and their many neuregulins and EGF-like ligands form a layered signalling network. The network structure allows the diversification, tuning and robustness of cell-to-cell signalling.

  • The network evolved from a simple signalling module that controls inductive morphogenesis in invertebrates. In mammals, specific ligands and their respective homo- or heterodimeric ErbB complexes specify different cell lineages.

  • Oncogenic animal viruses harness the network through diverse molecular processes that promote ErbB signalling or prevent it from being switched off.

  • Autocrine loops, mutant ErbB1 molecules and enhanced expression of ErbB receptors are frequently observed in human cancers of epithelial and neuronal origins. Most frequent is overexpression of ErbB2, a ligandless co-receptor that amplifies ErbB signalling.

  • Current attempts to block the network in human disease include small-molecule inhibitors of tyrosine kinases and chaperones, and various gene-therapy strategies. But immunotherapy directed at ErbB2 is already widely used, in combination with chemotherapy, to inhibit metastasizing breast cancers.

  • Future pharmacological advances and deeper understanding of the network will allow selective inhibition or activation of its many routes, with the aim of curing neuronal and skin disorders, as well as cancer.

Abstract

When epidermal growth factor and its relatives bind the ErbB family of receptors, they trigger a rich network of signalling pathways, culminating in responses ranging from cell division to death, motility to adhesion. The network is often dysregulated in cancer and lends credence to the mantra that molecular understanding yields clinical benefit: over 25,000 women with breast cancer have now been treated with trastuzumab (Herceptin®), a recombinant antibody designed to block the receptor ErbB2. Likewise, small-molecule enzyme inhibitors and monoclonal antibodies to ErbB1 are in advanced phases of clinical testing. What can this pathway teach us about translating basic science into clinical use?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ErbB signalling network.
Figure 2: Crosstalk between the ErbB network and other signalling pathways.
Figure 3: Signalling by ErbB homodimers in comparison with ErbB2-containing heterodimers.
Figure 4: Therapeutic strategies for blocking the ErbB signalling network.
Figure 5: Molecular diagnosis of breast cancer.

Similar content being viewed by others

References

  1. Burden, S. & Yarden, Y. Neuregulins and their receptors: a versatile signalling module in organogenesis and oncogenesis. Neuron 18, 847–855 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  2. Borg, J. -P. et al. ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nature Cell Biol. 2, 407–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Monilola, A. O., Neve, R. M., Lane, H. A. & Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19, 3159–3167 ( 2000).

    Article  Google Scholar 

  4. Baselga, J. et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14, 737–744 (1996).First full report of clinical tests of an anti-ErbB2 antibody as a single agent. Patients with metastatic breast cancer were intravenously treated with the recombinant drug. Toxicity was minimal and objective response was observed in several organs of a small group of patients.

    Article  CAS  PubMed  Google Scholar 

  5. Cobleigh, M. A. et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease . J. Clin. Oncol. 17, 2639– 2648 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Dickson, R. B. & Lippman, M. E. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocrin. Rev. 8, 29–43 (1987).

    Article  CAS  Google Scholar 

  7. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Jones, J. T., Akita, R. W. & Sliwkowski, M. X. Binding specificities and affinities of EGF domains for ErbB receptors. FEBS Lett. 447, 227– 231 (1999).Relative binding affinities of the EGF domains of 11 ErbB ligands were measured on 6 ErbB receptor combinations using soluble receptors. This format allowed precise determination of the effect of heterodimerization on ligand affinity and specificity.

    Article  CAS  PubMed  Google Scholar 

  9. Tzahar, E. et al. Bivalence of EGF-like ligands drives the ErbB signalling network . EMBO J. 16, 4938–4950 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landgraf, R. & Eisenberg, D. Heregulin reverses the oligomerization of HER3. Biochemistry 39, 8503– 8511 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Ferguson, K. M., Darling, P. J., Mohan, M. J., Macatee, T. L. & Lemmon, M. A. Extracellular domains drive homo- but not heterodimerization of erbB receptors. EMBO J. 19, 4632–4643 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guy, P. M., Platko, J. V., Cantley, L. C., Cerione, R. A. & Carraway, K. L. Insect cell-expressed p180ErbB3 possesses an impaired tyrosine kinase activity. Proc. Natl Acad. Sci. USA 91, 8132–8136 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  13. Klapper, L. N. et al. The ErbB2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc. Natl Acad. Sci. USA 96, 4995– 5000 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Tzahar, E. et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell. Biol. 16, 5276 –5287 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graus Porta, D., Beerli, R. R., Daly, J. M. & Hynes, N. E. ErbB2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signalling. EMBO J. 16, 1647–1655 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elenius, K. et al. Characterization of a naturally occurring ErbB4 isoform that does not bind or activate phosphatidyl inositol 3-kinase. Oncogene 18, 2607–2615 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  17. Olayioye, M. A. et al. ErbB1 and ErbB2 acquire distinct signalling properties dependent upon their dimerization partner. Mol. Cell. Biol. 18 , 5042–5051 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soltoff, S. P. & Cantley, L. C. p120cbl is a cytosolic adapter protein that associates with phosphoinositide 3-kinase in response to epidermal growth factor in PC12 and other cells. J. Biol. Chem. 271, 563–567 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Schaeffer, L., Duclert, N., Huchet Dymanus, M. & Changeux, J. P. Implication of a multisubunit Ets-related transcription factor in synaptic expression of the nicotinic acetylcholine receptor. EMBO J. 17, 3078–3090 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fedi, P., Pierce, J., Di Fiore, P. P. & Kraus, M. H. Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase Cγ or GTPase-activating protein, distinguishes ErbB3 signalling from that of other ErbB/EGFR family members. Mol. Cell. Biol. 14, 492–500 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pinkas-Kramarski, R. et al. Diversification of Neu differentiation factor and epidermal growth factor signalling by combinatorial receptor interactions. EMBO J. 15, 2452–2467 ( 1996).References 21 and 22 describe analyses of signal transduction by individual ErbB proteins and their combinations expressed in isolation in myeloid cells. This allows the pan-ErbB stimulatory effect of ErbB2 to be demonstrated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riese, D. J. II, van Raaij, T. M., Plowman, G. D., Andrews, G. C. & Stern, D. F. The cellular response to neuregulins is governed by complex interactions of the ErbB receptor family. Mol. Cell. Biol. 15, 5770– 5776 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kokai, Y. et al. Synergistic interaction of p185c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Cell 58, 287–292 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Alimandi, M. et al. Cooperative signalling of ErbB3 and ErbB2 in neoplastic transformation of human mammary carcinoma cells. Oncogene 15, 1813–1821 (1995).

    Google Scholar 

  25. Wallasch, C. et al. Heregulin-dependent regulation of HER2/neu oncogenic signalling by heterodimerization with HER3. EMBO J. 14, 4267–4275 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chausovsky, A. et al. Molecular requirements for the effect of neuregulin on cell spreading, motility and colony organization. Oncogene 19, 878–888 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Kainulainen, V. et al. A natural ErbB4 isoform that does not activate phosphoinositide 3-kinase mediates proliferation but not survival or chemotaxis. J. Biol. Chem. 275, 8641–8649 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Vaskovsky, A., Lupowitz, Z., Erlich, S. & Pinkas-Kramarski, R. ErbB4 activation promotes neurite outgrowth in PC12 cells. J. Neurochem. 74, 979–987 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  29. Carpenter, G. Employment of the epidermal growth factor receptor in growth factor-independent signalling pathways. J. Cell Biol. 146, 697–702 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Daub, H., Wallasch, C., Lankenau, A., Herrlich, A. & Ullrich, A. Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 16, 7032– 7044 (1997).Elucidation in cultured cells of crosstalk between G-protein-coupled receptors and ErbB signalling. Ectopic expression of G q - or G i -coupled receptors revealed the essential function of ErbB1 in downstream signalling of these G proteins to mitogen-activated protein kinases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luttrell, L. M., Della Rocca, G. J., van Biesen, T., Luttrell, D. K. & Lefkowitz, R. J. Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J. Biol. Chem. 272, 4637–4644 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  32. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A. & Schlessinger, J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383, 547–550 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Luttrell, L. M. et al. β-Arrestin-dependent formation of β2 adrenergic receptor–Src protein kinase complexes. Science 283, 655–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Yamauchi, T. et al. Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature 390, 91–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Wong, A. J. et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA 89 , 2965–2969 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Qiu, Y., Ravi, L. & Kung, H. J. Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature 393, 83 –85 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Miettinen, P. et al. Epithelial immaturity and multiorgan faliure in mice lacking epidermal growth factor receptor. Nature 376, 337–341 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Sibilia, M., Steinbach, J. P., Stingl, L., Aguzzi, A. & Wagner, E. F. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J. 17, 719–731 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 230–234 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Mann, G. et al. Mice with null mutations of the TGFα gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell 73, 249– 261 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Luetteke, N. C. et al. TGFα deficiency results in hair follicles and eye abnormalities in targeted and Waved-1 mice. Cell 73, 263 –278 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, X. et al. Domain-specific gene disruption reveals critical regulation of neuregulin signalling by its cytoplasmic tail. Proc. Natl Acad. Sci. USA 95, 13024–13029 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kramer, R. et al. Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. Proc. Natl Acad. Sci. USA 93, 4833–4838 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  44. Britsch, S. et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 12, 1825–1836 (1998).By targeting ErbB2, ErbB3 and NRG1, the authors revealed that the ternary complex has an essential role in the developing sympathetic nervous system. Apparently, signalling by this complex drives migration of sympathetic cells from the neural crest.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Erickson, S. L. et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development 124, 4999–5011 ( 1997).

    CAS  PubMed  Google Scholar 

  46. Riethmacher, D. et al. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389, 725– 730 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Fischbach, G. D. & Rosen, K. M. ARIA: a neuromuscular junction neuregulin. Annu. Rev. Neurosci. 20, 429–458 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Ozaki, M., Sasner, M., Yano, R., Lu, H. S. & Buonanno, A. Neuregulin-β induces expression of an NMDA-receptor subunit. Nature 390, 691– 694 (1997).Synaptogenesis in the central nervous system involves marked changes in the composition of N -methyl- d -aspartate receptors. This in vitro study implies that neuregulins regulate the composition of the neurotransmitter receptor in maturing synapses in the brain, in a manner analogous to the neuromuscular junction.

    Article  CAS  PubMed  Google Scholar 

  49. Dong, J. et al. Metalloprotease-mediated ligand release regulates autocrine signalling through the epidermal growth factor receptor. Proc. Natl Acad. Sci. USA 96, 6235–6240 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  50. Modjtahedi, H. & Dean, C. The receptor for EGF and its ligands: Expression, prognostic value and target for therapy in cancer. Int. J. Oncol. 4, 277– 296 (1994).

    CAS  PubMed  Google Scholar 

  51. Salomon, D. S., Brandt, R., Ciardiello, F. & Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies . Crit. Rev. Oncol. Hematol. 19, 183– 232 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Scher, H. I. et al. Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor-α in the progression of prostatic neoplasms. Clin. Cancer Res. 1, 545– 550 (1995).

    CAS  PubMed  Google Scholar 

  53. Wikstrand, C. J., Reist, C. J., Archer, G. E., Zalutsky, M. R. & Bigner, D. D. The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target. J. Neurovirol. 4, 148–158 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Moscatello, D. K. et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumours. Cancer Res. 55, 5536–5539 (1995).

    CAS  PubMed  Google Scholar 

  55. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235 , 177–182 (1987). First demonstration of the prognostic value of ErbB2 amplification in breast cancer. Gene amplification was correlated with several disease parameters, and was a significant predictor of patient survival and time to relapse.

    Article  CAS  PubMed  Google Scholar 

  56. Ross, J. S. & Fletcher, J. A. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 16, 413–428 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  57. Paik, S. & Liu, E. T. HER2 as a predictor of therapeutic response in breast cancer. Breast Dis. 11, 91–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Press, M. F. et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas . J. Clin. Oncol. 15, 2894– 2904 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Muss, H. B. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N. Engl. J. Med. 330, 1260–1266 (1994). First evidence that ErbB2 can predict therapeutic response in breast cancer. Using tissue blocks obtained from patients treated with adjuvant chemotherapy, the authors found that patients randomly assigned to a high-dose regimen of adjuvant chemotherapy had significantly longer disease-free and overall survival if their tumours overexpressed c-ErbB2.

    Article  CAS  PubMed  Google Scholar 

  60. Borg, A. et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett. 81, 137–144 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Carlomagno, C. et al. c-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases . J. Clin. Oncol. 14, 2702– 2708 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Pietras, R. J. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10, 2435–2446 (1995).

    CAS  PubMed  Google Scholar 

  63. Giani, C. et al. Increased expression of c-ErbB2 in hormone-dependent breast cancer cells inhibits cell growth and induces differentiation. Oncogene 17, 425–432 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  64. Xia, W. et al. Combination of EGFR, HER-2/neu, and HER-3 is a stronger predictor for the outcome of oral squamous cell carcinoma than any individual family members. Clin. Cancer Res. 5, 4164– 4174 (1999).

    CAS  PubMed  Google Scholar 

  65. Lyne, J. C. et al. Tissue expression of neu differentiation factor/heregulin and its receptor complex in prostate cancer and its biologic effects on prostate cancer cells in vitro. Cancer J. Sci. Am. 3, 21–30 (1997).

    CAS  PubMed  Google Scholar 

  66. Kew, T. Y. et al. c-ErbB4 protein expression in human breast cancer. Br. J. Cancer 82, 1163–1170 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gilbertson, R. J., Perry, R. H., Kelly, P. J., Pearson, A. D. & Lunec, J. Prognostic significance of HER2 and HER4 co-expression in childhood medulloblastoma. Cancer Res. 57, 3272–3280 (1997).

    CAS  PubMed  Google Scholar 

  68. Sliwkowski, M. X. et al. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol. 26, 60–70 (1999).

    CAS  PubMed  Google Scholar 

  69. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature Med. 6, 443– 446 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Disis, M. L. & Cheever, M. A. HER-2/neu protein: a target for antigen-specific immunotherapy of human cancer. Adv. Cancer Res. 71, 343–371 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  71. Sampson, J. H. et al. Unarmed, tumour-specific monoclonal antibody effectively treats brain tumours. Proc. Natl Acad. Sci. USA 97, 7503–7508 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Wu, X. et al. Involvement of p27KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody. Oncogene 12, 1397–1403 (1996).

    CAS  PubMed  Google Scholar 

  73. Levitzki, A. & Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782– 1788 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Fry, D. W. et al. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc. Natl Acad. Sci. USA 95, 12022– 12027 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Brugge, J. S. New intracellular targets for drug design, Science 260, 918–919 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Chang, J. Y. et al. The tumour suppression activity of E1A in HER-2/neu-overexpressing breast cancer. Oncogene 14, 561– 568 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Beerli, R. R., Wels, W. & Hynes, N. E. Intracellular expression of single chain antibodies reverts ErbB2 transformation. J. Biol. Chem. 269, 23931–23936 (1994).

    CAS  PubMed  Google Scholar 

  78. Alvarez, R. D. & Curiel, D. T. A phase I study of recombinant adenovirus vector-mediated delivery of an anti-ErbB2 single chain (sFv) antibody gene for previously treated ovarian and extraovarian cancer patients. Hum. Gene Ther. 8, 229– 242 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Ebbinghaus, S. W. et al. Triplex formation inhibits HER-2/neu transcription in vitro . J. Clin. Invest. 92, 2433– 2439 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vaughn, J. P. et al. Antisense DNA downregulation of the ERBB2 oncogene measured by a flow cytometric assay. Proc. Natl Acad. Sci. USA 92, 8338–8342 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Hsieh, S. S. et al. ERBB-2 expression is rate-limiting for epidermal growth factor-mediated stimulation of ovarian cancer cell proliferation. Int. J. Cancer 86, 644–651 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  82. Qian, X. et al. Kinase-deficient neu proteins suppress epidermal growth factor receptor function and abolish cell transformation. Oncogene 9, 1507–1514 (2000).

    Google Scholar 

  83. Kalmes, A., Vesti, B., Daum, G., Abraham, J. A. & Clowes, A. W. Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal grwoth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circulation Res. 87, 92–98 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  84. Ben-Bassat, H. & Klein, B. Y. Inhibitors of tyrosine kinases in the treatment of psoriasis. Curr. Pharm. Des. 6, 933–942 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  85. Nakata, A. et al. Localization of heparin-binding epidermal growth factor-like growth factor in human coronary arteries. Possible roles of HB-EGF in the formation of coronary atherosclerosis. Circulation 94, 2778–2786 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Wells, A. EGF receptor. Int. J. Biochem. Cell Biol. 31, 637–643 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Patel, N. V. et al. Neuregulin-1 and human epidermal growth factor receptors 2 and 3 play a role in human lung development in vitro. Am. J. Respir. Cell Mol. Biol. 22, 432– 440 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Levi, A. D. et al. The influence of heregulins on human Schwann cell proliferation . J. Neurosci. 15, 1329– 1340 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Levi, A. D. et al. The role of cultured Schwann cell grafts in the repair of gaps within the peripheral nervous system of primates. Exp. Neurol. 143, 25–36 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  90. Cohen, S. & Carpenter, G. Human epidermal growth factor: isolation and chemical and biological properties. Proc. Natl Acad. Sci. USA 72, 1317–1321 ( 1975).

    Article  CAS  PubMed  Google Scholar 

  91. Bray, D. & Lay, S. Computer simulated evolution of a network of cell-signalling molecules. Biophys. J. 66, 972–977 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aroian, R. V. & Sternberg, P. W. Multiple functions of let-23, a Caenorhabditis elegans receptor tyrosine kinase gene required for vulval induction. Genetics 128, 251– 267 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Volk, T. Signalling out Drosophila tendon cells. Trends Genet. 15, 448–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Schweitzer, R., Shaharabany, M., Seger, R. & Shilo, B.-Z. Secreted Spitz triggers the DER signalling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 10, 1518–1529 (1995).

    Article  Google Scholar 

  95. Schweitzer, R. et al. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376, 699–702 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Baulida, J., Kraus, M. H., Alimandi, M., Di Fiore, P. P. & Carpenter, G. All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J. Biol. Chem. 271, 5251–5257 (1996).Comparative analysis of ErbB proteins that shows that there are substantial differences in mechanisms of endocytosis-based attenuation.

    Article  CAS  PubMed  Google Scholar 

  97. Waterman, H., Sabanai, I., Geiger, B. & Yarden, Y. Alternative intracellular routing of ErbB receptors may determine signalling potency. J. Biol. Chem. 273, 13819–13827 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Worthylake, R. & Wiley, H. S. Structural aspects of the epidermal growth factor receptor required for transmodulation of ErbB2/neu . J. Biol. Chem. 272, 8594– 8601 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Lenferink, A. E. et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signalling superiority to receptor heterodimers . EMBO J. 17, 3385–3397 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sorkin, A., Di Fiore, P. P. & Carpenter, G. The carboxyl terminus of epidermal growth factor receptor/ErbB2 chimera is internalization impaired. Oncogene 8, 3021–3028 (1993).

    CAS  PubMed  Google Scholar 

  101. Muthuswamy, S. K., Gilman, M. & Brugge, J. Controlled dimerization of ErbB receptors provide evidence for differential signalling by homo- and heterodimers. Mol. Cell. Biol. 19, 6845–6857 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998). First report of the endocytic-sorting function of c-Cbl, a ubiquitin ligase that is a major substrate of ErbB1. Unlike sorting by c-Cbl to the late endosome, the oncogenic viral form, v-Cbl, shunts internalized receptors to the recycling pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Menzo, S. et al. Transactivation of epidermal growth factor receptor gene by the hepatitis B virus X-gene product. Virology 196, 878–882 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Miller, W. E., Earp, H. S. & Raab-Traub, N. The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J. Virol. 69, 4390–4398 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Opgenorth, A., Nation, N., Graham, K. & McFadden, G. Transforming growth factor-α, Shope fibroma virus factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits . Virology 192, 701–709 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Adelsman, M. A., Huntley, B. K. & Maihle, N. J. Ligand-independent dimerization of oncogenic v-erbB products involves covalent interactions. J. Virol. 70, 2533–2544 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Straight, S. W., Herman, B. & McCance, D. J. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J. Virol. 69, 3185–3192 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yamanaka, Y. et al. Co-expression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumour aggressiveness . Anticancer Res. 13, 565– 569 (1993).

    CAS  PubMed  Google Scholar 

  109. Krane, I. M. & Leder, P. NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 12, 1781– 1788 (1996).

    CAS  PubMed  Google Scholar 

  110. Gorgoulis, V. et al. Expression of EGF, TGF-α and EGFR in squamous cell lung carcinomas. Anticancer Res. 12, 1183– 1187 (1992).

    CAS  PubMed  Google Scholar 

  111. Irish, J. C. & Bernstein, A. Oncogenes in head and neck cancer . Laryngoscope 103, 42– 52 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Shintani, S., Funayama, T., Yoshihama, Y., Alcalde, R. E. & Matsumura, T. Prognostic significance of ERBB3 overexpression in oral squamous cell carcinoma. Cancer Lett. 95, 79–83 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.Y. acknowledges support by the Israel Science Fund, the US Army Medical Research and Material Command and the M.D. Institute for Cancer Research.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

ErbB1

NRGs

ErbB3

ErbB4

ErbB2

EGF

epiregulin

NRG1β

betacellulin

PI(3)K

Shc

p70S6K

PKC

Akt

Grb7

fos

jun

myc

zinc finger

Sp1

Egr1

GABP

Grb2

phospholipase Cγ

Src

Pyk2

arrestin

Jak2

interleukin-6

TGF-α

Drosophila EGF receptor

NRG1

Herceptin

p27Kip1

Rb

p130

C225

Hsp90

amphiregulin

Vein

Gurken

Spitz

Argos

FURTHER INFORMATION

The tumour gene database

ENCYCLOPEDIA OF LIFE SCIENCES

Drosophila embryo: dorsal–ventral specification

Glossary

MESENCHYME

Immature connective tissue that consists of cells embedded in extracellular matrix.

NEUREGULINS

EGF-like ligands whose primary receptor is ErbB3 and/or ErbB4. Four types of neuregulin are known.

STROMA

Supporting connective tissue in which a glandular or other epithelium is embedded.

HUMANIZED MONOCLONAL ANTIBODY

An antibody, usually from a rodent, engineered to contain mainly human sequences. This process reduces the immune response to the antibody in humans.

ADAPTOR PROTEINS

Proteins that augment cellular responses by recruiting other proteins to a complex. They usually contain several protein–protein interaction domains.

EGF-LIKE DOMAIN

A motif with 50 amino acids, including six cysteine residues and a mainly β-sheet structure, found in all ErbB-binding growth factors and in extracellular matrix proteins.

IMMUNOGLOBULIN-LIKE DOMAIN

A protein domain composed of two β-pleated sheets held together by a disulphide bond.

METALLOPROTEINASES

Proteinases that have a metal ion at their active sites.

MESODERM

The middle germ layer of the developing embryo. It gives rise to the musculoskeletal, vascular and urinogenital systems, and to connective tissue (including that of the dermis).

ECTODERM

The outermost germ layer of the developing embryo. It gives rise to the epidermis and the nerves.

AKT PATHWAY

Akt (or protein kinase B) is a serine/threonine protein kinase activated by the phosphatidylinositol-3-OH kinase pathway that activates survival responses.

STRESS-ACTIVATED PROTEIN KINASES

Members of the mitogen-activated protein kinase (MAPK) family that respond to stress. They include the Jun amino-terminal kinases (JNKs) and the p38 MAPKs.

UBIQUITIN LIGASES

Enzymes that catalyse the last stage of ubiquitylation, in which the small protein ubiquitin is transferred from a ubiquitin-conjugating enzyme (UBC or E2) to its target protein. They are also known as E3 enzymes.

GAPS

Proteins that inactivate small GTP-binding proteins, such as Ras family members, by increasing their rate of GTP hydrolysis.

GLIA

Supporting cells of the nervous system, including oligodendrocytes and astrocytes in the central nervous system, and Schwann cells in the peripheral nervous system. Glia surround neurons, providing mechanical and physical support, and electrical insulation between neurons.

SCHWANN CELLS

Cells that produce myelin and ensheath axons in the peripheral nervous system.

TRABECULAE

Finger-like projections of cardiac muscle cells that form ridges in the ventricular wall.

SYMPATHETIC GANGLIA

Clusters of sympathetic neurons in which a glandular or other epithelium is embedded.

NEURAL CREST

A group of embryonic cells that separate from the embryonic neural plate and migrate, giving rise to the spinal and autonomic ganglia, peripheral glia, chromaffin cells, melanocytes and some haematopoietic cells.

CLONAL EXPANSION

Growth of a population of cells from a single precursor cell.

CARCINOMA

A malignant tumour of epithelial origin.

PROGNOSIS

The likely outcome or course of a disease.

ANDROGEN-DEPENDENT PROSTATE CANCER

An early form of prostate cancer that is responsive to androgens and anti-androgen therapy.

AUTOCRINE

Activation of cellular receptors by ligands produced by the same cell.

GENE AMPLIFICATION

A differential increase in a specific portion of the genome. Amplification is associated with neoplastic transformation and acquisition of drug resistance.

DUCTAL BREAST CANCER

Cancer arising from the lining of the milk ducts, as opposed to the lobules of the breast (lobular breast cancer).

ANEUPLOIDY

An abnormal number of chromosomes caused by their inaccurate segregation during cell division.

FLUORESCENCE IN SITU HYBRIDIZATION

Visualizing a genetic marker on a chromosome by using a fluorescently labelled polynucleotide probe that hybridizes to a gene on a chromosome during metaphase.

FARNESYLTRANSFERASE INHIBITORS

Inhibitors that block the activity of Ras by preventing the addition of a farnesyl group that targets it to the plasma membrane.

TYRPHOSTINS

A type of tyrosine kinase inhibitor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarden, Y., Sliwkowski, M. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2, 127–137 (2001). https://doi.org/10.1038/35052073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35052073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing