Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phytochromes and light signal perception by plants—an emerging synthesis

Abstract

For plants, the sensing of light in the environment is as important as vision is for animals. Fluctuations in light can be crucial to competition and survival. One way plants sense light is through the phytochromes, a small family of diverse photochromic protein photoreceptors whose origins have been traced to the photosynthetic prokaryotes. During their evolution, the phytochromes have acquired sophisticated mechanisms to monitor light. Recent advances in understanding the molecular mechanisms of phytochromes and their significance to evolutionary biology make possible an interim synthesis of this rapidly advancing branch of photobiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of phytochrome action.

Similar content being viewed by others

References

  1. Neff, M. M., Fankhauser, C. & Chory, J. Light: an indicator of time and place. Genes Dev. 14, 257–271 ( 2000).

    CAS  PubMed  Google Scholar 

  2. Ahmad, M. & Cashmore, A. R Seeing blue: The discovery of cryptochrome. Plant Mol. Biol. 30, 851– 861 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Christie, J. M. et al. Arabidopsis NPH1: A flavoprotein with the properties of a photoreceptor for phototropism. Science 282, 1698–1701 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Smith, H. Light quality, photoperception and plant strategy. Annu. Rev. Plant Physiol. 33, 481–518 ( 1982).

    Article  CAS  Google Scholar 

  5. Ballare, C. L., Scope, A. L., Sanchez, R. A., Casal, J. J. & Ghersa, C. M. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Env. 10, 551–557 (1987).

    Google Scholar 

  6. Gilbert, I. R., Seavers, G. P., Jarvis, P. G. & Smith, H. Photomorphogenesis and canopy dynamics. Phytochrome-mediated proximity perception accounts for the growth dynamics of canopies of Populus trichocarpa X deltoides ‘Beaupré’. Plant Cell Env. 18, 475–497 (1995).

    Article  Google Scholar 

  7. Smith, H. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 289– 315 (1995).

    Article  CAS  Google Scholar 

  8. Clack, T., Mathews, S. & Sharrock, R. A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25, 413 –427 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Mathews, S. & Sharrock, R. A. The phytochrome gene family in grasses (Poaceae): A phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. Mol. Biol. Evol. 13, 1141–1150 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Mathews, S. & Sharrock, R. A. Phytochrome gene diversity. Plant Cell Env. 20, 666– 671 (1997).

    Article  CAS  Google Scholar 

  11. Alba, R., Kelmenson, P. M., Cordonnier-Pratt, M. M. & Pratt, L. H. The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Mol. Biol. Evol. 17, 362–373 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Kehoe, D. M. & Grossman, A. R. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273, 1409–1412 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Hughes, J. et al. A prokaryotic phytochrome. Nature 386 , 663 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Yeh, K. C., Wu, S. H., Murphy, J. T. & Lagarias, J. C. A cyanobacterial phytochrome two-component light sensory system. Science 277, 1505–1508 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, Z. Y. et al. Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285, 406–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Davis, S. J., Vener, A. V. & Vierstra, R. D. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286, 2517–2520 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Esch, H., Hartmann, E., Cove, D., Wada, M. & Lamparter, T. Phytochrome-controlled phototropism of protonemata of the moss Ceratodon purpureus: physiology of the wild type and class 2 ptr-mutants. Planta 209, 290– 298 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Nozue, K. et al. A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc. Natl Acad. Sci. USA 95, 15826–15830 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thümmler, F., Dufner, M., Kreisl, P. & Dittrich, P. Molecular cloning of a novel phytochrome gene of the moss Ceratodon-purpureus which encodes a putative light-regulated protein-kinase. Plant Mol. Biol. 20, 1003–1017 (1992).

    Article  PubMed  Google Scholar 

  20. Whitelam, G. C. & Devlin, P. F. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Env. 20, 752–75 ( 1997).

    Article  CAS  Google Scholar 

  21. Smith, H., Xu, Y. & Quail, P. H. Antagonistic but complementary actions of phytochromes A and B allow optimum seedling de-etiolation. Plant Physiol. 114, 637–641 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tobin, E. M. & Kehoe, D. M Phytochrome regulated gene expression. Semin. Cell Biology 5, 335– 346 (1994).

    Article  CAS  Google Scholar 

  23. Kuno, N., Muramatsu, T., Hamazato, F. & Furuya, M. identification by large-scale screening of phytochrome-regulated genes in etiolated seedlings of Arabidopsis thaliana using a fluorescent differential display technique. Plant Physiol. 122, 15 –22 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shacklock, P. S., Read, N. D. & Trewavas, A. J. Cytosolic free calcium mediates red light-induced photomorphogenesis. Nature 358, 753– 755 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Smith, H., Jackson, G. M. Rapid phytochrome regulation of wheat seedling extension. Plant Physiol. 84, 1059–1062 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parks, B. M. & Spalding, E. P. Sequential and coordinated action of phytochromes A and B. Proc. Natl Acad. Sci. USA 96, 14142–14146 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wada, M., Grolig, F. & Haupt, W. Light-oriented chloroplast positioning—contribution to progress in photobiology. J. Photochem. Photobiol. B 17, 3–25 (1993).

    Article  CAS  Google Scholar 

  28. Quail, P. H. et al. Phytochromes-photosensory perception and signal-transduction. Science 268, 675–680 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Cashmore, A. R. Higher-plant phytochrome: “I used to date histidine, but now I prefer serine”. Proc. Natl Acad. Sci. USA 95, 13358–13360 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schneider-Poetsch, H. A. W. Signal transduction by phytochrome- phytochromes have a module related to the transmitter modules of bacterial sensor proteins. Photochem. Photobiol. 56, 839–846 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  31. Yeh, K. C. & Lagarias, J. C. Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl Acad. Sci. USA 95, 13976– 13981 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fankhauser, C. et al. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284, 1539–1541 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Ahmad, M., Jarillo, J. A., Smirnova, O. & Cashmore, A. R. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol. Cell, 1, 939– 948 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Choi, G. et al. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401, 610– 613 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Ni, M., Tepperman, J. M. & Quail, P. H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657–667 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Ni, M., Tepperman, J. M. & Quail, P. H. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400, 781–784 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Halliday, K. J., Hudson, M., Ni, M., Qin, M. M. & Quail, P. H. poc1: An Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proc. Natl Acad. Sci. USA 96, 5832–5837 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez-Garcia, J. F., Huq, E. & Quail, P. H. Direct targeting of light signals to a promoter element-bound transcription factor. Science 288, 859– 863 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Terzaghi, W. B. & Cashmore, A. R. Light-regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 445–474 (1995).

    Article  CAS  Google Scholar 

  40. Nagy, F. & Schäfer, E. Nuclear and cytosolic events of light-induced, phytochrome-regulated signaling in higher plants. EMBO J. 19: 157-163 (2000).

  41. Kircher, S. et al. Light quality-dependent nuclear import of the plant photoreceptors phytochromes A and B. Plant Cell 11, 1445 –1456 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamaguchi, R., Nakamura, M., Mochzuki, N., Kay, S. A. & Nagatani, A. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis . J. Cell Biol. 145, 437– 445 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bognar, L. K. et al. The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B. Proc. Natl Acad. Sci. USA 96, 14652–14657 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Annu. Rev. Genet. 13, 115–155 (1965).

    Google Scholar 

  45. Schlichting, C. D. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Systematics 17, 667–693 (1986).

    Article  Google Scholar 

  46. Sultan, S. E. Evolutionary implications of phenotypic plasticity in plants. Evol. Biol. 21, 127–178 (1987).

    Article  Google Scholar 

  47. Via, S. et al. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10, 212–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Van Tienderen, P. H. & Koelewijn, H. P. Selection on reaction norms, genetic correlations and constraints. Genet. Res. 64, 115–125 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  49. Callahan, H. S., Pigliucci, M. & Schlichting, C. D. Developmental phenotypic plasticity: where ecology and evolution meet molecular biology. BioEssays 19, 519–525 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Schmitt, J., Dudley, S. A. & Pigliucci, M. Manipulative approaches to testing adaptive plasticity: phytochrome-mediated shade-avoidance responses in plants. Am. Nat. 154, S43–S54 ( 1999).

    PubMed  Google Scholar 

  51. Ballare, C. L. & Scopel, A. L. Phytochrome signalling in plant canopies: testing its population-level implications with photoreceptor mutants of Arabidopsis. Funct. Ecol. 11, 441–450 (1997).

    Article  Google Scholar 

  52. Pigliucci, M. & Schmitt, J. Genes affecting phenotypic plasticity in Arabidopsis: pleiotropic effects and reproductive fitness of photomorphogenic mutants. J. Evol. Biol. 12, 551-562 (1999).

    Google Scholar 

  53. Schmitt, J., McCormac, A. C., Smith, H. A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. Am. Nat. 146, 937– 953 (1995).

    Article  Google Scholar 

  54. Smith, H. Signal perception, differential expression within multigene families and the molecular basis of phenotypic plasticity. Plant Cell Env. 13, 585–594 (1990).

    Article  CAS  Google Scholar 

  55. McSteen, P. & Hake, S. Genetic control of plant development. Curr. Op. Biotechnol. 9, 189– 195 (1998).

    Article  CAS  Google Scholar 

  56. Purugannan, M. D. The molecular genetics of regulatory genes. Mol. Ecol. 9, 1451–1462 (2000)

    Article  Google Scholar 

  57. Meyerowitz, E. M. Plants, animals and the logic of development. Trends Biochem. Sci. 24, M65–M68 ( 1999)

    Article  Google Scholar 

  58. Ting, C. T., Tsaur, S. C., Wu, M. L. & Wu, C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282, 1501–1504 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Purugannan, M. D., Rounsley, S. D., Schmidt, R. J. & Yanofsky, M. F. Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genetics 140, 354 –356 (1995).

    Google Scholar 

  60. Mitchell-Olds, T. The molecular-basis of quantitative genetic-variation in natural-populations. Trends Ecol. Evol. 10, 324– 328 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Alonso-Blanco, C. & Koornneef, M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci. 5, 22– 29 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C. J. & Koornneef, M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 96, 4710–4717 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alonso-Blanco, C., El-Assal, S. E., Coupland, G. & Koornneef, M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Isles ecotypes of Arabidopsis thaliana. Genetics 149, 749–764 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Swarup, K. et al. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J. 20, 67–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Robson, P. R. H., McCormac, A. C., Irvine, A. S. & Smith, H. Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nature Biotechnol. 14, 995–998 (1996).

    Article  CAS  Google Scholar 

  66. Olsen, J. E. et al. Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J. 12, 1339–1350 ( 1997).

    Article  CAS  Google Scholar 

  67. Donoghue, M. J. & Mathews, S. Duplicate genes and the root of angiosperms, with an example using phytochrome sequences. Molecular Phylogenet. Evol. 9, 489– 500 (1998).

    Article  CAS  Google Scholar 

  68. Mathews, S. & Donoghue, M. J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286, 947–950 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Quail, P. H. An emerging molecular map of the phytochrome. Plant Cell Environment 20, 657–665 ( 1997).

    Article  CAS  Google Scholar 

  70. Whitelam, G. C. & Devlin, P. F. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Env. 20, 752–758 ( 1997).

    Article  CAS  Google Scholar 

  71. Robson, P. R. H. & Smith, H. Fundamental and biotechnological applications of the phytochromes. Plant Cell Env. 20, 831–839 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank the following for information and comment: J. Chory, M. Furuya, J. C. Lagarias, P. H. Quail, J. Schmitt, P.-S. Song. The author's research on shade avoidance was supported by the UK Natural Environment Research Council, the UK Biotechnology and Biological Sciences Research Council and the Council of the European Commission. The literature survey for this article was completed on 31 March 2000.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, H. Phytochromes and light signal perception by plants—an emerging synthesis. Nature 407, 585–591 (2000). https://doi.org/10.1038/35036500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing