Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microtubule motors in mitosis

Abstract

The mitotic spindle uses microtubule-based motor proteins to assemble itself and to segregate sister chromatids. It is becoming clear that motors invoke several distinct mechanisms to generate the forces that drive mitosis. Moreover, in carrying out its function, the spindle appears to pass through a series of transient steady-state structures, each established by a delicate balance of forces generated by multiple complementary and antagonistic motors. Transitions from one steady state to the next can occur when a change in the activity of a subset of mitotic motors tips the balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spindle pole and chromosome movements during mitosis.
Figure 2: Structure and polarity patterns of MTs in the metaphase spindle.
Figure 3: Immunofluorescence micrograph showing the bipolar kinesin, in the midzone of Drosophila embryonic spindles.
Figure 4

Similar content being viewed by others

References

  1. Hoyt, M. A. & Geiser, J. R. Genetic analysis of the mitotic spindle. Annu. Rev. Genet. 30, 7– 33 (1996).

    Article  CAS  Google Scholar 

  2. McIntosh, J. R. & McDonald, K. L. The mitotic spindle. Sci. Am. 261, 48– 56 (1989).

    Article  CAS  Google Scholar 

  3. Inoue, S. & Sato, H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J. Gen. Physiol. 50 (Suppl.), 259–292 (1967).

    Article  Google Scholar 

  4. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237– 242 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 ( 1995).

    Article  CAS  Google Scholar 

  6. McIntosh, J. R., Hepler, P. K. & Van Wie, D. G. Model for mitosis. Nature 224, 659–663 (1969).

    Article  ADS  Google Scholar 

  7. McDonald, K. L., Edwards, M. K. & McIntosh, J. R. Cross-sectional structure of the central mitotic spindle of Diatoma vulgare. Evidence for specific interactions between antiparallel microtubules. J. Cell Biol. 83, 443–461 (1979).

    Article  CAS  Google Scholar 

  8. Vale, R. D. & Fletterick, R. J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745 –777 (1997).

    Article  CAS  Google Scholar 

  9. Holzbaur, E. L. & Vallee, R. B. DYNEINS: molecular structure and cellular function. Annu. Rev. Cell Biol. 10, 339–372 (1994).

    Article  CAS  Google Scholar 

  10. Enos, A. P. & Morris, N. R. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60, 1019–1027 ( 1990).

    Article  CAS  Google Scholar 

  11. Meluh, P. B. & Rose, M. D. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60, 1029– 1041 (1990); erratum ibid 61, 548.

    Article  CAS  Google Scholar 

  12. Cole, D. G., Saxton, W. M., Sheehan, K. B. & Scholey, J. M. A “slow” homotetrameric kinesin-related motor protein purified from Drosophila embryos. J. Biol. Chem. 269, 22913–22916 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kashina, A. S. et al. A bipolar kinesin. Nature 379, 270–272 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Gordon, D. M. & Roof, D. M. The kinesin-related protein Kip1p of Saccharomyces cerevisiae is bipolar. J. Biol. Chem. 274, 28779–28786 (1999).

    Article  CAS  Google Scholar 

  15. Sharp, D. J. et al. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J. Cell Biol. 144, 125–138 (1999).

    Article  CAS  Google Scholar 

  16. Hagan, I. & Yanagida, M. Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature 347 , 563-566 (1990).

    Article  ADS  Google Scholar 

  17. Hoyt, M. A., He, L., Loo, K. K. & Saunders, W. S. Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J. Cell Biol. 118, 109– 120 (1992).

    Article  CAS  Google Scholar 

  18. Roof, D. M., Meluh, P. B. & Rose, M. D. Kinesin-related proteins required for assembly of the mitotic spindle. J. Cell Biol. 118, 95–108 (1992).

    Article  CAS  Google Scholar 

  19. Sawin, K. E., LeGuellec, K., Philippe, M. & Mitchison, T. J. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359, 540–543 ( 1992).

    Article  ADS  CAS  Google Scholar 

  20. Heck, M. M. et al. The kinesin-like protein KLP61F is essential for mitosis in Drosophila. J. Cell Biol. 123, 665– 679 (1993).

    Article  CAS  Google Scholar 

  21. Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159– 1169 (1995).

    Article  CAS  Google Scholar 

  22. Sharp, D. J., Yu, K. R., Sisson, J. C., Sullivan, W. & Scholey, J. M. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nature Cell Biol. 1, 51–54 (1999 ).

    Article  CAS  Google Scholar 

  23. Huxley, H. E. Sliding filaments and molecular motile systems. J. Biol. Chem. 265, 8347–8350 ( 1990).

    CAS  PubMed  Google Scholar 

  24. Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A. & Endow, S. A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J. Biol. Chem. 268, 9005–9013 ( 1993).

    CAS  Google Scholar 

  25. Kuriyama, R. et al. Characterization of a minus end-directed kinesin-like motor protein from cultured mammalian cells. J. Cell Biol. 129, 1049–1059 (1995).

    Article  CAS  Google Scholar 

  26. Pidoux, A. L., LeDizet, M. & Cande, W. Z. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function. Mol. Biol. Cell 7, 1639–1655 (1996).

    Article  CAS  Google Scholar 

  27. Karabay, A. & Walker, R. A. Identification of microtubule binding sites in the Ncd tail domain. Biochemistry 38, 1838–1849 (1999).

    Article  CAS  Google Scholar 

  28. Narasimhulu, S. B. & Reddy, A. S. Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell 10, 957– 965 (1998).

    Article  CAS  Google Scholar 

  29. Kuriyama, R. et al. Heterogeneity and microtubule interaction of the CHO1 antigen, a mitosis-specific kinesin-like protein. Analysis of subdomains expressed in insect sf9 cells. J. Cell Sci. 107, 3485 –3499 (1994).

    CAS  PubMed  Google Scholar 

  30. Waterman-Storer, C. M., Karki, S. & Holzbaur, E. L. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl Acad. Sci. USA 92, 1634– 1638 (1995).

    Article  ADS  CAS  Google Scholar 

  31. McDonald, H. B., Stewart, R. J. & Goldstein, L. S. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63, 1159–1165 (1990).

    Article  CAS  Google Scholar 

  32. Nislow, C., Lombillo, V. A., Kuriyama, R. & McIntosh, J. R. A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359, 543–547 (1992).

    Article  ADS  CAS  Google Scholar 

  33. Verde, F., Berrez, J. M., Antony, C. & Karsenti, E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112, 1177–1187 (1991).

    Article  CAS  Google Scholar 

  34. Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241– 253 (2000).

    Article  CAS  Google Scholar 

  35. Adams, R. R., Tavares, A. A., Salzberg, A., Bellen, H. J. & Glover, D. M. pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev. 12, 1483– 1494 (1998).

    Article  CAS  Google Scholar 

  36. Raich, W. B., Moran, A. N., Rothman, J. H. & Hardin, J. Cytokinesis and midzone microtubule organization in Caenorhabditis elegans require the kinesin-like protein ZEN-4. Mol. Biol. Cell 9, 2037–2049 (1998).

    Article  CAS  Google Scholar 

  37. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Roles of motor proteins in building microtubule-based structures: a basic principle of cellular design. Biochim. Biophys. Acta 1496, 128–141 ( 2000).

    Article  CAS  Google Scholar 

  38. Yeh, E., Skibbens, R. V., Cheng, J. W., Salmon, E. D. & Bloom, K. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 130, 687–700 (1995).

    Article  CAS  Google Scholar 

  39. Busson, S., Dujardin, D., Moreau, A., Dompierre, J. & De Mey, J. R. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr. Biol. 8, 541–4 (1998 ).

    Article  CAS  Google Scholar 

  40. O'Connell, C. B. & Wang, Y. Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol. Biol. Cell 11, 1765– 1764 (2000).

    Article  CAS  Google Scholar 

  41. Holleran, E. A., Tokito, M. K., Karki, S. & Holzbaur, E. L. Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol. 135, 1815–1829 (1996).

    Article  CAS  Google Scholar 

  42. Merdes, A. & Cleveland, D. W. Pathways of spindle pole formation: different mechanisms; conserved components. J. Cell Biol. 138, 953–956 (1997).

    Article  CAS  Google Scholar 

  43. Matthies, H. J., McDonald, H. B., Goldstein, L. S. & Theurkauf, W. E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cell Biol. 134, 455–464 (1996).

    Article  CAS  Google Scholar 

  44. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–8 (1998).

    Article  CAS  Google Scholar 

  46. Hyman, A. A. & Mitchison, T. J. Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature 351, 206–211 ( 1991).

    Article  ADS  CAS  Google Scholar 

  47. Yen, T. J., Li, G., Schaar, B. T., Szilak, I. & Cleveland, D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359, 536– 539 (1992).

    Article  ADS  CAS  Google Scholar 

  48. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 ( 1990).

    Article  ADS  CAS  Google Scholar 

  49. Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345, 263–265 (1990).

    Article  ADS  CAS  Google Scholar 

  50. Wood, K. W., Sakowicz, R., Goldstein, L. S. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357– 366 (1997).

    Article  CAS  Google Scholar 

  51. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 ( 1998).

    Article  CAS  Google Scholar 

  52. Bowman, A. B. et al. Drosophila roadblock and Chlamydomonas LC7: a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J. Cell Biol. 146, 165–180 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, S., Wisniewski, J. C., Dentler, W. L. & Asai, D. J. Gene knockouts reveal separate functions for two cytoplasmic dyneins in Tetrahymena thermophila. Mol. Biol. Cell 10, 771–784 (1999).

    Article  CAS  Google Scholar 

  54. Rieder, C. L. & Salmon, E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124, 223– 233 (1994).

    Article  CAS  Google Scholar 

  55. Wang, S. Z. & Adler, R. Chromokinesin: a DNA-binding, kinesin-like nuclear protein. J. Cell Biol. 128, 761– 768 (1995).

    Article  CAS  Google Scholar 

  56. Molina, I. et al. A chromatin-associated kinesin-related protein required for normal mitotic chromosome segregation in Drosophila. J. Cell Biol. 139, 1361–1371 (1997).

    Article  CAS  Google Scholar 

  57. Ruden, D. M., Cui, W., Sollars, V. & Alterman, M. A Drosophila kinesin-like protein, Klp38B, functions during meiosis, mitosis, and segmentation. Dev. Biol. 191, 284– 296 (1997).

    Article  CAS  Google Scholar 

  58. Alphey, L. et al. KLP38B: a mitotic kinesin-related protein that binds PP1. J. Cell Biol. 138, 395– 409 (1997).

    Article  CAS  Google Scholar 

  59. Tokai, N. et al. Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. Embo J 15, 457-467 (1996).

    Article  Google Scholar 

  60. Lombillo, V. A., Nislow, C., Yen, T. J., Gelfand, V. I. & McIntosh, J. R. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J. Cell Biol. 128, 107– 115 (1995).

    Article  CAS  Google Scholar 

  61. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 ( 1996).

    Article  CAS  Google Scholar 

  62. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  Google Scholar 

  63. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere- associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 ( 1995).

    Article  CAS  Google Scholar 

  64. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787– 801 (1998).

    Article  CAS  Google Scholar 

  65. Straight, A. F., Sedat, J. W. & Murray, A. W. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143 , 687–694 (1998).

    Article  CAS  Google Scholar 

  66. Saunders, W. S. & Hoyt, M. A. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70, 451–458 ( 1992).

    Article  CAS  Google Scholar 

  67. O'Connell, M. J., Meluh, P. B., Rose, M. D. & Morris, N. R. Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans. J. Cell Biol. 120, 153– 162 (1993).

    Article  CAS  Google Scholar 

  68. Mountain, V. et al. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147, 351-366 (1999 ).

    Article  Google Scholar 

  69. Follette, P. J. & O'Farrell, P. H. Cdks and the Drosophila cell cycle. Curr. Opin. Genet. Dev. 7, 17–22 (1997).

    Article  CAS  Google Scholar 

  70. Sawin, K. E. & Mitchison, T. J. Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc. Natl Acad. Sci. USA 92, 4289–4293 (1995).

    Article  ADS  CAS  Google Scholar 

  71. Lee, K. S., Yuan, Y. L., Kuriyama, R. & Erikson, R. L. Plk is an M-phase-specific protein kinase and interacts with a kinesin- like protein, CHO1/MKLP-1. Mol. Cell Biol. 15, 7143–7151 (1995).

    Article  CAS  Google Scholar 

  72. Chan, G. K., Jablonski, S. A., Sudakin, V., Hittle, J. C. & Yen, T. J. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J. Cell Biol. 146, 941– 954 (1999).

    Article  CAS  Google Scholar 

  73. Giet, R., Uzbekov, R., Cubizolles, F., Le Guellec, K. & Prigent, C. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J. Biol. Chem. 274, 15005 –15013 (1999).

    Article  CAS  Google Scholar 

  74. Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  CAS  Google Scholar 

  75. Nicklas, R. B. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Biophys. Chem. 17, 431–449 (1988).

    Article  CAS  Google Scholar 

  76. Heald, R. Motor function in the mitotic spindle. Cell 102, 399–402 (2000).

    Article  CAS  Google Scholar 

  77. Funabiki, H. & Murray, A. W. The Xenopus Chromokinesin, XKid, is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411–424 (2000).

    Article  CAS  Google Scholar 

  78. Antonio, C. et al. XKid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425– 435 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Scholey.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharp, D., Rogers, G. & Scholey, J. Microtubule motors in mitosis. Nature 407, 41–47 (2000). https://doi.org/10.1038/35024000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35024000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing