Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The temporal response of the brain after eating revealed by functional MRI

Abstract

After eating, the human brain senses a biochemical change and then signals satiation, but precisely when this occurs is unknown. Even for well-established physiological systems like glucose–insulin regulation, the timing of interaction between hormonal processes and neural events is inferred mostly from blood sampling1,2,3,4,5,6. Recently, neuroimaging studies have provided in vivo information about the neuroanatomical correlates of the regulation of energy intake7,8,9,10. Temporal orchestration of such systems, however, is crucial to the integration of neuronal and hormonal signals that control eating behaviour11. The challenge of this functional magnetic resonance imaging study is to map not only where but also when the brain will respond after food ingestion. Here we use a temporal clustering analysis technique to demonstrate that eating-related neural activity peaks at two different times with distinct localization. Importantly, the differentiated responses are interacting with an internal signal, the plasma insulin. These results support the concept of temporal parcellation of brain activity12, which reflects the different natures of stimuli and responses. Moreover, this study provides a neuro-imaging basis for detecting dynamic processes without prior knowledge of their timing, such as the acute effects of medication and nutrition in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuro-biochemical interaction: an fMRI protocol for tracing the time course of brain activation following oral glucose intake.
Figure 2: Temporal maxima of brain activity following glucose ingestion.
Figure 3: Mapping of dynamic brain activities following glucose ingestion.
Figure 4: Time-dependent correlation between the fMRI response and the fasting plasma insulin concentrations.

Similar content being viewed by others

References

  1. Rolls, E. T. & Treves, A. in Neural Network and Brain Function (eds Rolls, E. T. & Treves, A.) 17–22 (Oxford Univ. Press, Oxford/New York, 1998).

    Google Scholar 

  2. Saper, C. B. in The Human Nervous System (ed. Paxinos, G.) 389– 413 (Academic, New York, 1990).

    Book  Google Scholar 

  3. Benzo, C. A. The hypothalamus and blood glucose regulation. Life Sci. 32, 2509–2515 (1983).

    Article  CAS  Google Scholar 

  4. Rohner-Jeanrenaud, F., Robbioni, E., Ionescu, E., Sauter, J. F. & Jeanrenaud, B. Central nervous system regulation of insulin secretion. Adv. Metab. Disord. 10, 193–220 (1983).

    Article  CAS  Google Scholar 

  5. Oomura, Y. in Handbook of the Hypothalamus (eds Morgane, P. J. & Panksepp, J.) 557–620 (Dekker, New York, 1981).

    Google Scholar 

  6. Grossman, S. P. Role of the hypothalamus in the regulation of food and water intake. Psychol. Rev. 82, 200–224 (1975).

    Article  CAS  Google Scholar 

  7. Tataranni, P. A. et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc. Natl Acad. Sci. USA 96, 4569–4574 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Gautier, J.-F. et al. Regions of the human brain affected during a liquid-meal taste perception in the fasting state: a positron emission tomography study. Am. J. Clin. Nutr. 70, 806–810 (1999).

    Article  CAS  Google Scholar 

  9. Denton, D. et al. Correlation of regional cerebral blood flow and change of plasma sodium concentration during genesis and satiation of thirst. Proc. Natl Acad. Sci. USA 96, 2532–2537 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Matsuda, M. et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes 48, 1801– 1806 (1999).

    Article  CAS  Google Scholar 

  11. Woods, S. C., Seeley, R. J., Porte, D. J. & Schwartz, M. W. Signals that regulate food intake and energy homeostasis. Science 280, 1378–1383 ( 1998).

    Article  ADS  CAS  Google Scholar 

  12. Liu, Y., Gao, J.-H., Liotti, M., Pu, Y. & Fox, P. T. Temporal dissociation of parallel processing in the human subcortical outputs. Nature 400, 364–367 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Friston, K. J., Jezzard, P. & Turner, R. Analysis of functional MRI time-series. Hum. Brain Mapp. 1, 153–171 (1994).

    Article  Google Scholar 

  14. Rosen, B. R., Buckner, R. L. & Dale, A. M. Event-related functional MRI: past, present, and future. Proc. Natl Acad. Sci. USA 95, 773 –780 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Ngan, S.-C. & Hu, X. Analysis of functional magnetic resonance imaging data using self-organizing mapping with spatial connectivity. Magn. Reson. Med. 41, 939–946 (1999).

    Article  CAS  Google Scholar 

  16. Bendettini, P. A., Jesmanowicz, A., Wong, E. C. & Hyde, J. S. Processing strategies for time course data sets in functional MRI of the human brain. Magn. Reson. Med. 30, 161– 173 (1993).

    Article  Google Scholar 

  17. Xiong, J., Gao, J.-H., Lancaster, J. L. & Fox, P. T. Assessment and optimization of functional MRI analyses. Hum. Brain Mapp. 4, 153–167 ( 1996).

    Article  CAS  Google Scholar 

  18. Zatorre, R. J., Jones-Gotman, M., Evans, A. C. & Meyer, E. Functional localization and lateralization of human olfactory cortex. Nature 360, 339–340 ( 1992).

    Article  ADS  CAS  Google Scholar 

  19. Kinomura, S. et al. Functional anatomy of taste perception in the human brain studied with positron emission tomography. Brain Res. 659, 263–266 (1994).

    Article  CAS  Google Scholar 

  20. Scott, T. R., Yan, J. & Rolls, E. T. Brain mechanisms of satiety and taste in macaques. Neurobiology 3, 281–292 (1995).

    CAS  PubMed  Google Scholar 

  21. Reiman, E. M. The application of positron emission tomography to the study of normal and pathologic emotions. J. Clin. Psychiatry 58, S4–12 (1997).

    Google Scholar 

  22. Le Doux, J. E. in Handbook of Physiology (eds Plum, F. & Mountcastle, V. B.) 419–459 (Am. Physiol. Soc., Washington, DC, 1987).

    Google Scholar 

  23. Liu, Y. et al. Temporal differentiation of the global effect and regional effect of microwave heating on the monkey cerebral circulation. NeuroImage 9, S120 (1999).

    Google Scholar 

  24. Fox, P. T. et al. Mapping human visual cortex with positron emission tomography. Nature 323, 806–809 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Fox, P. T., Mintun, M. A., Reiman, E. M. & Raichle, M. E. Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J. Cereb. Blood Flow Metab. 8, 642–653 (1988).

    Article  CAS  Google Scholar 

  26. Worsley, K. J., Evans, A. C., Marrett, S. & Neelin, P. A three dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12, 900 –918 (1992).

    Article  CAS  Google Scholar 

  27. Friston, K. J., Worsley, K. J., Frackowak, R. S. J., Mazziotta, J. C. & Evans, A. C. Assessing the significance of focal activations using their spatial extent. Human Brain Mapping 3, 210–220 (1994).

    Article  Google Scholar 

  28. Worsley, K. J. Local maxima and the expected Euler characteristic of excursion sets of χ2, F and t fields. Adv. Appl. Prob. 26, 13–42 (1994).

    Article  MathSciNet  Google Scholar 

  29. Buechel, C., Coull, J. T. & Friston, K. J. The predictive value of changes in effective connectivity for human learning. Science 283, 1538– 1541 (1999).

    Article  ADS  Google Scholar 

  30. Liu, H.-L. et al. Comparison of the center of mass and navigator echo corrections of image shift induced by central frequency shift in EPI fMRI. Proc. Int. Soc. Magn. Reson. Med. 7, 271 (1999).

    Google Scholar 

Download references

Acknowledgements

We thank M. Matsuda, R. A. DeFronzo, L. Nickerson, S. C. Pridgen and M. Liotti for their help in this study.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Gao, JH., Liu, HL. et al. The temporal response of the brain after eating revealed by functional MRI. Nature 405, 1058–1062 (2000). https://doi.org/10.1038/35016590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016590

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing