Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disruption of the plant gene MOM releases transcriptional silencing of methylated genes

Abstract

Epigenetic modifications change transcription patterns in multicellular organisms to achieve tissue-specific gene expression and inactivate alien DNA such as transposons or transgenes1,2. In plants and animals, DNA methylation is involved in heritability and flexibility of epigenetic states3, although its function is far from clear. We have isolated an Arabidopsis gene, MOM, whose product is required for the maintenance of transcriptional gene silencing. Mutation of this gene or depletion of its transcript by expression of antisense RNA reactivates transcription from several previously silent, heavily methylated loci. Despite this, the dense methylation at these reactivated loci is maintained even after nine generations, indicating that transcriptional activity and methylation pattern are inherited independently. The predicted MOM gene product is a nuclear protein of 2,001 amino acids containing a region similar to part of the ATPase region of the SWI2/SNF2 family, members of which are involved in chromatin remodelling4. MOM is the first known molecular component that is essential for transcriptional gene silencing and does not affect methylation pattern. Thus, it may act downstream of methylation in epigenetic regulation, or be part of a new pathway that does not require methylation marks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of HPT transcripts and DNA methylation status in the mom1 mutant.
Figure 2: Phenotypes of the mom1 mutant.
Figure 3: Structure and expression of the mutant mom1 locus and identification of the MOM gene.
Figure 4: Comparison of MOM with other proteins and its subcellular localization.

Similar content being viewed by others

References

  1. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet. 20, 116–118 (1998).

    Article  CAS  Google Scholar 

  2. Matzke, A. J. M. & Matzke, M. A. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol. 1, 142–148 ( 1998).

    Article  CAS  Google Scholar 

  3. Bird, A. P. Gene number, noise reduction and biological complexity. Trends Genet. 11, 94–100 ( 1995).

    Article  CAS  Google Scholar 

  4. Kingston, R. E. & Narlikar, G. J. ATP-dependent remodelling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352 (1999).

    Article  CAS  Google Scholar 

  5. Adams, R. L. P. et al. in DNA Methylation: Molecular Biology and Biological Significance (eds Jost, J. P. & Saluz, H. P.) 120–144 (Birkhauser, Basel, Boston, Berlin, 1993).

    Book  Google Scholar 

  6. Jost, J. -P., Siegmann, M., Sun, L. & Leung, R. Mechanism of DNA demethylation in chicken embryos: Purification and properties of a 5-methylcytosine-DNA glycosidase. J. Biol. Chem. 270, 9734– 9739 (1995).

    Article  CAS  Google Scholar 

  7. Ronemus, M. J., Galbiati, M., Ticknor, C., Chen, J. & Dellaporta, S. L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273, 654–656 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Finnegan, E. J., Peacock, W. J. & Dennis, E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl Acad. Sci. USA 93, 8449–8454 ( 1996).

    Article  ADS  CAS  Google Scholar 

  9. Jeddeloh, J. A., Bender, J. & Richards, E. J. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev. 12, 1714–1725 (1998).

    Article  CAS  Google Scholar 

  10. Mittelsten Scheid, O., Afsar, K. & Paszkowski, J. Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc. Natl Acad. Sci. USA 95, 632–637 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Nan, X. S. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187– 191 (1998).

    Article  CAS  Google Scholar 

  13. Furner, I. J., Sheikh, M. A. & Collett, C. E. Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics 149, 651–662 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vongs, A., Kakutani, T., Martienssen, R. A. & Richards, E. J. Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet. 22, 94– 97 (1999).

    Article  CAS  Google Scholar 

  16. Kakutani, T., Munakata, K., Richards, E. J. & Hirochika, H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics 151, 831–838 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gorbalenya, A. E. & Koonin, E. V. Helicases: amino acid sequence comparisons and structure–function relationships. Curr. Opin. Struct. Biol. 3, 419–429 (1993).

    Article  CAS  Google Scholar 

  18. Subramanya, H. S., Bird, L. E., Brannigan, J. A. & Wigley, D. B. Crystal structure of a Dexx box DNA helicase. Nature 384, 379–383 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Yao, N. et al. Structure of the hepatitis C virus RNA helicase domain. Nature Struct. Biol. 4, 463–497 (1997).

    Article  CAS  Google Scholar 

  20. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicases with a DNA substrate indicate an inchworm mechanism. Cell 97, 75– 84 (1999).

    Article  CAS  Google Scholar 

  21. Koonin, E. V. & Rudd, K. E. Two domains of superfamily I helicases may exist as separate proteins. Protein Sci. 5, 178–180 (1996).

    Article  CAS  Google Scholar 

  22. Jiang, Y. W. & Stillman, D. Epigenetic effects on yeast transcription caused by mutations in an actin-related protein present in the nucleus. Genes Dev. 10, 604–19 ( 1996).

    Article  CAS  Google Scholar 

  23. Chuang, J. -Z., Lin, D. C. & Lin, S. Molecular cloning, expression, and mapping of the high affinity actin-binding domain of chicken cardiac tensin. J. Cell Biol. 128 , 1095–1109 (1995).

    Article  CAS  Google Scholar 

  24. Hicks, G. R. & Raikhel, N. V. Protein import into the nucleus: an integrated view. Annu. Rev. Cell Dev. Biol. 11, 155–188 (1995).

    Article  CAS  Google Scholar 

  25. von Heijne, G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487– 494 (1992).

    Article  CAS  Google Scholar 

  26. Workman, H. J., Evance, C. D. & Blobel, G. The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains. J. Cell Biol. 111, 1535–1542 (1990).

    Article  Google Scholar 

  27. Martin, L., Crimaudo, C. & Gerace, L. cDNA cloning and characterization of lamina-associated polypeptide 1C (LAP1C), an integral protein of the inner nuclear membrane. J. Biol. Chem. 270, 8822– 8828 (1995).

    Article  CAS  Google Scholar 

  28. Furukawa, K., Pante, N., Aebi, U. & Gerace, L. Cloning of a cDNA for lamina-associated polypeptide 2 (LAP2) and identification of regions that specify targeting to the nuclear envelope. EMBO J. 14, 1626–1636 (1995).

    Article  CAS  Google Scholar 

  29. Bird, A. & Wolffe, A. P. Methylation-induced repression— belts, braces, and chromatin. Cell 99, 451 –454 (1999).

    Article  CAS  Google Scholar 

  30. Mengiste, T., Amedeo, P. & Paszkowski, J. High-efficiency transformation of Arabidopsis thaliana with a selectable marker gene regulated by the T-DNA 1’ promoter. Plant J. 12, 945–948 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Vaucheret for the Arabidopsis line 6b5, M. Duckely for help with nuclear localization of MOM, and M. Briker and S. van Eeden for greenhouse help. We also thank B. Hohn, J.-P. Jost, F. Meins, J. Hofsteenge and P. King for their comments on the manuscript. Y. Habu is a visiting scientist from the National Institute for Basic Biology, Okazaki, Japan.

Author information

Authors and Affiliations

Authors

Additional information

Correspondence and requests for materials should be addressed to Y. Habu. Accession numbers for the complete MOM genomic sequence (Co) and cDNA (Zh) are AF213628 and AF213627, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amedeo, P., Habu, Y., Afsar, K. et al. Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature 405, 203–206 (2000). https://doi.org/10.1038/35012108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012108

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing