Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular control over Au/GaAs diodes

Abstract

The use of molecules to control electron transport is an interesting possibility, not least because of the anticipated role of molecules in future electronic devices1. But physical implementations using discrete molecules are neither conceptually2,3 simple nor technically straightforward (difficulties arise in connecting the molecules to the macroscopic environment). But the use of molecules in electronic devices is not limited to single molecules, molecular wires or bulk material. Here we demonstrate that molecules can control the electrical characteristics of conventional metal–semiconductor junctions, apparently without the need for electrons to be transferred onto and through the molecules. We modify diodes by adsorbing small molecules onto single crystals of n-type GaAs semiconductor. Gold contacts were deposited onto the modified surface, using a ‘soft’ method to avoid damaging the molecules4. By using a series of multifunctional molecules whose dipole is varied systematically, we produce diodes with an effective barrier height that is tuned by the molecule's dipole moment. These barrier heights correlate well with the change in work function of the GaAs surface after molecular modification. This behaviour is consistent with that of unmodified metal–semiconductor diodes, in which the barrier height can depend on the metal's work function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of Au/molecule-on-n-GaAs junctions.
Figure 2: Dependence of the effective barrier height (φb) at the Au/derivatized n-GaAs interface on the following parameters.

Similar content being viewed by others

References

  1. Aviram, A. & Ratner, M. (eds) Molecular electronics: science and technology. Ann. NY Acad. Sci. 852, (1998).

  2. Heath, J. R., Kuekes, P. J., Snider, G. S. & Williams, R. S. A defect-tolerant computer architecture: Opportunities for nanotechnology. Science 280, 1716–1721 (1998).

    Article  CAS  Google Scholar 

  3. Tour, J. M., Kozaki, M. & Seminario, J. M. Molecular scale electronics: A synthetic/computational approach to digital computing. J. Am. Chem. Soc. 120 , 8486–8493 (1999).

    Article  Google Scholar 

  4. Haag, R., Rampi, M. A., Holmlin, R. E. & Whitesides, G. M. Electrical breakdown of aliphatic and aromatic self-assembled monolayers used as nanometer-thick organic dielectrics. J. Am. Chem. Soc. 121, 7895–7906 (1999).

    Article  CAS  Google Scholar 

  5. Wilson, E. K. DNA conductance convergence? Chem. Eng. News 77(36) , 43–48 (1999).

    Article  Google Scholar 

  6. Bumm, L. A., Arnold, J. J., Dunbar, T. D., Allara, D. L. & Weiss, P. S. Electron transfer through organic molecules. J. Phys. Chem. B 103, 8122– 8127 (1999).

    Article  CAS  Google Scholar 

  7. Slowinsky, K., Fong, H. K. Y. & Majda, M. Mercury-mercury tunneling junctions. 1. Electron tunneling across symmetric and asymmetric alkanethiolate bilayers. J. Am. Chem. Soc. 121, 7257–7261 (1999).

    Article  Google Scholar 

  8. Ratner, M. A. et al. Molecular wires: charge transport, mechanisms, and control. Ann. NY Acad. Sci. 852, 22– 37 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Bruening, M. et al. Simultaneous control of surface potential and wetting of solids with chemisorbed multifunctional ligands. J. Am. Chem. Soc. 119, 5720–5728 (1997).

    Article  CAS  Google Scholar 

  10. Bastide, S. et al. Controlling the work function of GaAs by chemisorption of benzoic acid derivatives. J. Phys. Chem. 101, 2678–2684 (1997).

    Article  CAS  Google Scholar 

  11. Cohen, R., Zenou, N., Cahen, D. & Yitzchaik, S. Molecular electronic tuning of Si surfaces. Chem. Phys. Lett. 279, 270–274 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Cohen, R. et al. Controlling electronic properties of CdTe by adsorption of dicarboxylic acid derivatives: Relating molecular parameters to band bending and electron affinity changes. Adv. Mater. 9, 746– 749 (1997).

    Article  CAS  Google Scholar 

  13. Vilan, A. et al. Real time electronic monitoring of adsorption kinetics; evidence for 2-site adsorption mechanism of dicarboxylic acids on GaAs (100). J. Phys. Chem 102, 3307–3309 (1998).

    Article  CAS  Google Scholar 

  14. Cohen, R. et al. Controlling semiconductor surface electronic properties by dicarboxylic acids. J. Amer. Chem. Soc. 121, 10545– 10551 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Gal, D. et al. Engineering the interface energetics of solar cells by grafting molecular properties onto semiconductors. Proc. Ind. Acad. Sci. Chem. Sci. 109, 487–496 (1997).

    Article  CAS  Google Scholar 

  16. Moons, E. Linking the interfacial chemistry and physics of CuInSe2- and CdTe-based photovoltaic cells and diodes PhD thesis Feinberg Grad. School, Weizmann Institute of Science, Rehovot (1995).

    Google Scholar 

  17. Zuppiroli, L. et al. self-assembled monolayers as interfaces for organic opto-electronic devices. Eur. Phys. J. B 11, 505– 512 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Campbell, L. H. et al. Controlling charge injection in organic electronic devices using self-assembled monolayers. Appl. Phys. Lett. 71, 3528–3530 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Krueger, J., Bach, U. & Grätzel, M. Modification of TiO2 heterojunctions with benzoic acid derivatives in hybrid molecular solid-state devices. Adv. Mater. 12, 447–451 (2000).

    Article  Google Scholar 

  20. Moons, E. et al. Electron transport in hybrid organic/inorganic structures. Synth. Met. 76, 245–248 (1996).

    Article  CAS  Google Scholar 

  21. Martin, A., Sambles, J. & Ashwell, G. Molecular rectifier. Phys. Rev. Lett. 70, 218–221 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Yablonovitch, E., Hwang, D. M., Gmitter, T. J., Florez, L. T. & Harbison, J. P. Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates. Appl. Phys. Lett. 56, 2419–2421 ( 1990).

    Article  ADS  CAS  Google Scholar 

  23. Brillson, L. J. Contacts to Semiconductors; Fundamentals and Technology (Noyes, Park Ridge, New Jersey, 1993).

    Google Scholar 

  24. Kronik, L. & Shapira, Y. Surface photovoltage techniques: theory, experiments and applications. Surf. Sci. Rep. 37, 1–204 (1999).

    Article  ADS  CAS  Google Scholar 

  25. van Ruyven, L. J. The position of the Fermi level at a heterojunction interface. Phys. Status Solidi 5, K109–K111 (1964).

    Article  ADS  CAS  Google Scholar 

  26. Böer, K. W. Survey of Semiconductor Physics Vol. II, Barriers, Junctions, Surfaces, and Devices (Van Nostrand Reinhold, New York, 1992 ).

    Google Scholar 

  27. Capasso, F., Cho, A. Y., Mohammed, K. & Foy, P. W. Doping interface dipoles: Tunable heterojunction barrier heights and band-edge discontinuities by molecular beam epitaxy. Appl. Phys. Lett. 46, 664–666 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Rhoderick, E. A. & Williams, R. H. Metal-semiconductor Contacts (Clarendon, Oxford, 1988).

    Google Scholar 

  29. Sze, S. M. Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  30. Kurtin, S., McGill, T. C. & Mead, C. A. Fundamental transition in the electronic nature of solids. Phys. Rev. Lett. 22, 1433– 1436 (1970).

    Article  ADS  Google Scholar 

  31. Yaliraki, S., Roitberg, A., Gonzalez, C., Mujica, V. & Ratner, M. The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description. J. Chem. Phys. 111, 6997–7002 (1999).

    Article  ADS  CAS  Google Scholar 

  32. Lide, D. R. (ed.) Handbook of Chemistry and Physics 73rd edn, 9– 50 (CRC Press, Boca Raton, Florida, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank R. Fleishman for help with early experiments, L. Kronik for discussions, and J. Krüger, U. Bach and M. Grätzel (EPFL) for sharing their unpublished results with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cahen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilan, A., Shanzer, A. & Cahen, D. Molecular control over Au/GaAs diodes. Nature 404, 166–168 (2000). https://doi.org/10.1038/35004539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35004539

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing