Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complex patterns formed by motile cells of Escherichia coli

Abstract

WHEN chemotactic strains of the bacterium Escherichia coli are inoculated on semi-solid agar containing mixtures of amino acids or sugars, the cells swarm outwards in a series of concentric rings: they respond to spatial gradients of attractants generated by uptake and catabolism1–3. Cells also drift up gradients generated artificially, for example by diffusion from the tip of a capillary tube4 or by mixing5. Here we describe conditions under which cells aggregate in response to gradients of attractant which they excrete themselves. When cells are grown in semi-solid agar on intermediates of the tricarboxylic acid cycle, they form symmetrical arrays of spots or stripes that arise sequentially. When cells in a thin layer of liquid culture are exposed to these compounds, spots appear synchronously, more randomly arrayed. In either case, the patterns are stationary. The attractant is a chemical sensed by the aspartate receptor. Its excretion can be triggered by oxidative stress. As oxygen is limiting at high cell densities, aggregation might serve as a mechanism for collective defence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adler, J. Science 153, 708–716 (1966).

    Article  ADS  CAS  Google Scholar 

  2. Nossal, R. Expl Cell. Res. 75, 138–142 (1972).

    Article  CAS  Google Scholar 

  3. Wolfe, A. J. & Berg, H. C. Proc. natn. Acad. Sci. U.S.A. 86, 6973–6977 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Adler, J. Science 166, 1588–1597 (1969).

    Article  ADS  CAS  Google Scholar 

  5. Dahlquist, F. W., Lovely, P. & Koshland, D. E. Jr Nature new Biol. 236, 120–123. (1972).

    Article  CAS  Google Scholar 

  6. Berg, H. C. Cold Spring Harbor Symp. quant Biol. 55, 539–545 (1990).

    Article  CAS  Google Scholar 

  7. Macnab, R. M. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology Vol. 1 (eds Neidhardt, F. C. et al.) 732–759 (American Society for Microbiology, Washington, DC, 1987).

    Google Scholar 

  8. Qu, Y. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 86, 8358–8362 (1989).

    Article  ADS  Google Scholar 

  9. Mesibov, R. & Adler, J. J. Bact. 112, 315–326 (1972).

    CAS  PubMed  Google Scholar 

  10. Neidhardt, F. C., Ingraham, J. L. & Schaechter, M. Physiology of the Bacterial Cell Ch. 7 (Sinauer Associates, Sunderland, MA, 1990).

    Google Scholar 

  11. Berg, H. C. & Turner, L. Nature 278, 349–351 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford University Press, Oxford, 1985).

    Google Scholar 

  13. Storz, G., Tartaglia, L. A., Farr, S. B. & Ames, B. N. Trends Genet. 6, 363–368 (1990).

    Article  CAS  Google Scholar 

  14. Berg, H. C. & Turner, L. Biophys. J. 58, 919–930 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Berg, H. C. & Purcell, E. M. Biophys. J. 20, 193–219 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Losick, R. & Shapiro, L. Microbial Development (Cold Spring Harbor Laboratory, New York, 1984).

    Google Scholar 

  17. Shimkets, L. J. & Kaiser, D. J. Bact. 152, 451–461 (1982).

    CAS  PubMed  Google Scholar 

  18. Gerhart, J. Trends Genet. 5, 233–236 (1989).

    Article  CAS  Google Scholar 

  19. Oster, G. F. & Murray, J. D. J. exp. Zool. 251, 186–202 (1989).

    Article  CAS  Google Scholar 

  20. Miller, J. H. Experiments in Molecular Genetics 431 (Cold Spring Harbor Laboratory, New York, 1972).

    Google Scholar 

  21. Wolfe, A. J., Conley, M. P., Kramer, T. J. & Berg, H. C. J. Bact. 169, 1878–1885 (1987).

    Article  CAS  Google Scholar 

  22. Parkinson, J. S. J. Bact. 135, 45–53 (1978).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budrene, E., Berg, H. Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633 (1991). https://doi.org/10.1038/349630a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349630a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing