Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient photoelectrochemical solar cells from electrolyte modification

Abstract

PHOTOELECTROCHEMICAL solar cells (PECs)1–3 have shown energy conversion efficiencies approaching 13% in sunlight4, and up to 15% in simulated insolation5. Of these, only those incorporating n-cadmium chalcogenide electrodes have been demonstrated to be conducive to thin film6 or in situ storage systems7. Previous studies of photoelectrochemical current and voltage limitation2,3,5,8,9 have focused on modification of the semiconductor electrode. Here we take the alternative approach by demonstrating that energy conversion can be improved by prevention of electrode surface modification and by systematic modification of the electrolyte. Electrolyte modification entails investigations of the primary photo-oxidized species, the nature of the counter ion, the distribution of species in solution, and related competing reactions. Optimization of the distribution of species and addition of cyanide to n-CdSe/([KFe(CN)6]2−/3−)aq PECs enhances the available voltage and the ease of charge transfer, and suppresses related decomposition products. The resultant PEC achieves an open-circuit potential of 1.2 V, an efficiency of 16.4%—the highest for any wide-band-gap (1.7 eV) solar cell (solid state or photoelectrochemical)—and a 100-fold improvement in photocurrent lifetime. Each of these represents a step towards realization of a viable PEC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parkinson, B. Accounts Chem. Res. 17, 431–437 (1984).

    Article  CAS  Google Scholar 

  2. Miller, B., Heller, A., Menezes, S. & Lewerenz, H. J. Discuss. Faraday Soc. 70, 223–232 (1981).

    Article  CAS  Google Scholar 

  3. Noufi, R. Conf. Rec. IEEE Photovoltaic Spec. Conf. 16th, 1293–1298 (1982).

  4. Licht, S. et al. Appl. Phys. Lett. 46, 608–610 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Tufts, B. J. et al. Nature 326, 861–862 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Licht, S. J. phys. Chem. 90, 1096–1099 (1986).

    Article  CAS  Google Scholar 

  7. Licht, S., Hodes, G., Tenne, R. & Manassen, J. Nature 326, 863–864 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Reichman, J. & Russak, M. A. J. electrochem. Soc. 131, 796–798 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Rubin, H. D., Humphrey, B. D. & Bocarsley, A. B. Nature 308, 339–341 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Freeze, K. W. Jr. Appl. Phys. Lett. 40, 275–277 (1982).

    Article  ADS  Google Scholar 

  11. Rubin, H. D., Arent, D. J. & Bocarsley, A. B. J. electrochem. Soc. 132, 523–524 (1985).

    Article  CAS  Google Scholar 

  12. Licht, S. Nature 330, 148–151 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Jordan, J. & Ewing, G. J. Inorg. Chem. 1, 587–591 (1962).

    Article  CAS  Google Scholar 

  14. Hanania, G. I. H., Irvine, D. H., Easton, W. A. & George, P. J. phys. Chem. 71, 2022–2030 (1967).

    Article  CAS  Google Scholar 

  15. Capone, S., de Robertis, A., de Stafano, C. & Scarella, R. J. chem. Res. 1, 412–413 (1986).

    Google Scholar 

  16. Peter, L. M., Durr, W., Bindra, P. & Gerischer, H. J. electroanalyt. Chem. 132, 31–50 (1976).

    Article  Google Scholar 

  17. Lando, D., Manassen, J., Hodes, G. & Cahen, D. J. Am. chem. Soc. 101, 3969–3971 (1979).

    Article  CAS  Google Scholar 

  18. Licht, S., Tenne, R., Flaisher, H. & Manassen, J. J. electrochem. Soc. 133, 52–59 (1985).

    Article  Google Scholar 

  19. Itaya, K., Akahoshi, H. & Toshima, S. J. electrochem. Soc. 129, 1498–1500 (1982).

    Article  CAS  Google Scholar 

  20. Asperger, S., Murati, I. & Pavlovic, D. J. chem. Soc. 730–736 (1960).

    Article  Google Scholar 

  21. Lal, B. B. Ind. chem. Soc. J. 16, 321–323 (1939).

    CAS  Google Scholar 

  22. Ayers, J. B. & Waggoner, W. H. J. inorg. nucl. Chem. 33, 721–733 (1971).

    Article  CAS  Google Scholar 

  23. Reihlen, H. & Zimmermann, W. Justus Liebigs Annln Chem. 475, 101–119 (1929).

    Article  CAS  Google Scholar 

  24. Heller, A., Chang, K.-C. & Miller, B. J. Am. chem. Soc. 100, 684–688 (1978).

    Article  CAS  Google Scholar 

  25. Licht, S. & Marcu, V. J. electroanalyt. Chem. 210, 197–204 (1986).

    Article  CAS  Google Scholar 

  26. Thackeray, J. W., Natan, M. J., Ng, P. & Wrighton, M. S. J. Am. chem. Soc. 108, 3570–3577 (1986).

    Article  CAS  Google Scholar 

  27. Abrahams, I. L. et al. New J. Chim. 11, 157–165 (1987).

    CAS  Google Scholar 

  28. Henry, C. H. J. appl. Phys. 51, 4494–4500 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Licht, S., Peramunage, D. Efficient photoelectrochemical solar cells from electrolyte modification. Nature 345, 330–333 (1990). https://doi.org/10.1038/345330a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345330a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing