Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium entry through stretch-inactivated ion channels in mdx myotubes

Abstract

RECENT advances in understanding the molecular basis of human X-linked muscular dystrophies (for a review, see ref. 1) have come from the identification of dystrophin, a cytoskeletal protein associated with the surface membrane2–4. Although there is little or virtually no dystrophin in affected individuals5,6, it is not known how this causes muscle degeneration. One possibility is that the membrane of dystrophic muscle is weakened and becomes leaky to Ca2+ (refs 7–9). In muscle from mdx mice, an animal model of the human disease10, intracellular Ca2+ is elevated and associated with a high rate of protein degradation11. The possibility that a lack of dystrophin alters the resting permeability of skeletal muscle to Ca2+ prompted us to compare Ca2+permeable ionic channels in muscle cells from normal and mdx mice. We now show that recordings of single-channel activity from mdx myotubes are dominated by the presence of Ca2+-permeable mechano-trans-ducing ion channels. Like similar channels in normal skeletal muscle, they are rarely open at rest, but open when the membrane is stretched by applying suction to the electrode12–14. Other channels in mdx myotubes, however, are often open for extended periods of time at rest and close when suction is applied to the electrode. The results show a novel type of mechano-transducing ion channel in mdx myotubes that could provide a pathway for Ca2+ to leak into the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoffman, E. P. & Kunkel, L. M. Neuron 2, 1019–1029 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Knudson, C. M. Hoffman, E. P., Kahl, S. D., Kunkel, L. & Campbell, K. P. J. biol. Chem. 263, 8480–8484 (1988).

    CAS  PubMed  Google Scholar 

  3. Watkins, S. C., Hoffman, E. P., Slayter, H. S. & Kunkel, L. M. Nature 333, 863–866 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Campbell, K. P. & Kahl, S. D. Nature 338, 259–262 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Webster, C., Silberstein, L., Hays, A. P. & Blau, H. M. Cell 52, 503–513 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Bonilla, E. et al. Cell 54, 447–452 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Bodensteiner, J. B. & Engel, A. G. Neurology 28, 439–446 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Fingerman, E., Campisi, J. & Pardee, A. B. Proc. natn. Acad. Sci. U.S.A. 81, 7617–7621 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Mongini, T. et al. Neurology 38, 476–480 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Bulfield, G., Siller, W. G., Wight, P. A. L. & Moore, K. J. Proc. natn. Acad. Sci. U.S.A. 81, 1189–1192 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Turner, P. R., Westwood, T., Regen, C. M. Steinhardt, R. A. Nature 335, 735–738 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Brehm, P., Kullberg, R. & Moody-Corbett, F. J. Physiol. 350, 631–648 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guharay, F. & Sachs, F. J. Physiol. 352, 685–701 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Franco, A. Jr & Lansman, J. B. J. Physiol. (in the press).

  15. Morris, C. E. & Sigurdson, W. J. Science 243, 807–809 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Adams, D. J., Dwyer, T. M. & Hille, B. J. gen. Physiol. 75, 493–510 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Leonard, J. P. & Salpeter, M. M. J. Cell Biol. 82, 811–819 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Cooper, B. J. & Hamill, O. P. Soc. Neurosci. (Abstr.) 15, 412.5 (1989).

    Google Scholar 

  19. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflugers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco , A., Lansman, J. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344, 670–673 (1990). https://doi.org/10.1038/344670a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344670a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing