Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electronic structure of atomically resolved carbon nanotubes

Abstract

Carbon nanotubes can be thought of as graphitic sheets with a hexagonal lattice that have been wrapped up into a seamless cylinder. Since their discovery in 19911, the peculiar electronic properties of these structures have attracted much attention. Their electronic conductivity, for example, has been predicted2,3,4 to depend sensitively on tube diameter and wrapping angle (a measure of the helicity of the tube lattice), with only slight differences in these parameters causing a shift from a metallic to a semiconducting state. In other words, similarly shaped molecules consisting of only one element (carbon) may have very different electronic behaviour. Although the electronic properties of multi-walled and single-walled nanotubes5,6,7,8,9,10,11,12 have been probed experimentally, it has not yet been possible to relate these observations to the corresponding structure. Here we present the results of scanning tunnelling microscopy and spectroscopy on individual single-walled nanotubes from which atomically resolved images allow us to examine electronic properties as afunction of tube diameter and wrapping angle. We observe bothmetallic and semiconducting carbon nanotubes and find thatthe electronic properties indeed depend sensitively on thewrapping angle. The bandgaps of both tube types are consistent with theoretical predictions. We also observe van Hove singularities at the onset of one-dimensional energy bands, confirming the strongly one-dimensional nature of conduction within nanotubes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relation between the hexagonal carbon lattice and the chirality of carbon nanotubes.
Figure 2: Electronic properties of single-walled carbon nanotubes.
Figure 3: (dI/dV)/(I/V) which is a measure of the density of states versus V for nanotube no. 9.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Hamada, N., Sawada, S.-I. & Oshiyama, A. New one-dimensional conductors: graphite microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Mintmire, J. W., Dunlap, B. I. & White, C. T. Are fullerene tubules metallic? Phys. Rev. Lett. 68, 631–634 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Bockrath, et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

    Article  CAS  Google Scholar 

  7. Ebbesen, T. W. et al. Electrical conductivity of individual carbon nanotubes. Nature 382, 54–56 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Ge, M. & Sattler, K. Vapor-condensation generation of and STM analysis of fullerene tubes. Science 260, 515–518 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Zhang, Z. & Lieber, C. M. Nanotube structure and electronic properties probed by scanning tunneling microscopy. Appl. Phys. Lett. 62, 2792–2794 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Ge, M. & Sattler, K. STM of single-shell nanotubes of carbon. Appl. Phys. Lett. 65, 2284–2286 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Olk, C. H. & Heremans, J. P. Scanning tunneling spectroscopy of carbon nanotubes. J. Mater. Res. 9, 259–262 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Carroll, D. L. et al. Electronic structure and localized states at carbon nanotube tips. Phys. Rev. Lett. 78, 2811–2814 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Dresselhaus, M. S. Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, (1996)).

    Google Scholar 

  14. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Cowley, J. M., Nikolaev, P., Thess, A. & Smalley, R. E. Electron nano-diffraction study of carbon single-walled nanotube ropes. Chem. Phys. Lett. 265, 379–384 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Venema, L. C. et al. STM atomic resolution images of single-wall carbon nanotubes. Appl. Phys. A(in the press).

  17. Mintmire, J. W., Robertson, D. H. & White, C. T. Properties of fullerene nanotubules. J. Phys. Chem. Solids 54, 1835–1840 (1993).

    Article  ADS  CAS  Google Scholar 

  18. White, C. T. et al. in Buckminsterfullerenes (eds Billups, W. E. & Ciufolini, M. A.) 125–184 (VCH, Weinheim, (1993)).

    Google Scholar 

  19. Kane, C. L. & Mele, E. J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932–1936 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Gadzuk, J. W. Resonance-tunneling spectroscopy of atoms adsorbed on metal surfaces: theory. Phys. Rev. B 1, 2110–2129 (1970).

    Article  ADS  Google Scholar 

  21. Stroscio, J. A., Feenstra, R. M. & Fein, A. P. Electronic structure of the Si(111)2 × 1 surface by scanning tunneling spectroscopy. Phys. Rev. Lett. 57, 2579–2582 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Feenstra, R. M., Stroscio, J. A. & Fein, A. P. Tunneling spectroscopy of the Si(111)2 × 1 surface. Surf. Sci. 181, 295–306 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Lang, N. D. Spectroscopy of single atoms in the scanning tunneling microscope. Phys. Rev. B 34, R5947–R5950 (1986).

    Article  ADS  Google Scholar 

  24. Hamers, R. J. in Scanning Tunneling Microscopy and Spectroscopy (ed. Bonnell, D. A.) 51–103 (VCH, New York, (1993)).

    Google Scholar 

  25. Wildöer, J. W. G., van Roij, A. J. A., van Kempen, H. & Harmans, C. J. P. M. Low-temperature scanning tunneling microscope for use on artificially fabricated nanostructures. Rev. Sci. Instrum. 65, 2849–2852 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The first two authors contributed equally to the present work. We thank S. J. Tans and J. C. Charlier for discussions, and L. P. Kouwenhoven, J. E. Mooij and P. M. Dewilde for support. The work at Delft was supported by the Dutch Foundation for Fundamental Research of Matter (FOM). The nanotube research at Rice was funded in part by the US NSF, the Texas Advanced Technology Program and the Robert A. Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cees Dekker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilder, J., Venema, L., Rinzler, A. et al. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998). https://doi.org/10.1038/34139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34139

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing