Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate

Abstract

In many non-muscle cells1,2, D-inositol 1,4,5-trisphosphate (InsP3) has been shown to release Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. It is thought to be a ubiquitous second messenger that is produced in, and released from, the plasma membrane in response to extracellular receptor stimulation. By analogy, InsP3 in muscle cells has been postulated to open calcium channels in the sarcoplasmic reticulum (SR) membrane, which is the intracellular Ca2+ store that releases Ca2+ during muscle contraction3,4. We report here that InsP3 may have a second site of action. We show that InsP3 opens dihydropyridine-sensitive Ca2+ channels in a vesicular preparation of rabbit skeletal muscle transverse tubules5–10. InsP3-activated channels and channels activated by a dihydropyridine agonist in the same preparation have similar slope conductance and extrapolated reversal potential and are blocked by a dihydropyridine antagonist. This suggests that in skeletal muscle, InsP3 can modulate Ca2+ channels of transverse tubules from plasma membrane, in contrast to the previous suggestion that the functional locus of InsP3 is exclusively in the sarcoplasmic reticulum membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berridge, M. J. exp. Biol. 124, 323–335 (1986).

    CAS  PubMed  Google Scholar 

  2. Berridge, M. A. Rev. Biochem. 56, 159–193 (1987).

    Article  CAS  Google Scholar 

  3. Vergara, J., Tsien, R. Y. & Delay, M. Proc. natn. Acad. Sci. U.S.A. 82, 6352–6356 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Volpe, P., Salvati, G., Di Virgilio, F. & Pozzan, T. Nature 316, 347–349 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Affolter, H. & Coronado, R. Biophys. J. 48, 341–347 (1985).

    Article  CAS  Google Scholar 

  6. Coronado, R. & Affolter, H. J. gen. Physiol. 87, 933–953 (1986).

    Article  CAS  Google Scholar 

  7. Coronado, R. & Smith, J. S. Biophys. J. 51, 497–502 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Ma, J. & Coronado, R. Biophys. J. 53, 387–395 (1988).

    Article  CAS  Google Scholar 

  9. Valdivia, H. & Coronado, R. Biophys. J. 53, 555a (1988).

    Google Scholar 

  10. Vilven, J. et al. Biophys. J. 53, 665a (1988).

    Article  Google Scholar 

  11. Lea, T. J., Griffiths, P. J., Treagear, R. T. & Ashley, C. C. FEBS Lett. 207, 153–161 (1986).

    Article  CAS  Google Scholar 

  12. Nosek, T., Williams, M., Zeigler, S. & Godt, R. Am. J. Physiol. 19, C807–C811 (1986).

    Article  Google Scholar 

  13. Walker, J. W., Somlyo, A. V., Goldman, Y. E., Somlyo, A. P. & Trentham, D. R. Nature 327, 249–252 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Rojas, E., Nassar-Gentina, V., Luxoro, M., Pollord, M. E. & Carrasco, M. A. Can. J. Physiol. Pharmac. 65, 672–680 (1987).

    Article  CAS  Google Scholar 

  15. Mikos, G. J. & Snow, T. R. FEBS Lett. 927, 256–260 (1987).

    CAS  Google Scholar 

  16. Donaldson, S. K., Goldberg, N. D., Walseth, T. F. & Huettman, D. A. Proc. natn. Acad. Sci. U.S.A. 85, 5749–5753 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Hannon, J. D., Lee, N. K. M. & Blinks, J. R. Biophys. J. 53, 607a (1988).

    Google Scholar 

  18. Suarez-Isla, B. A. et al. Biophys. J. 54, 737–740 (1988).

    Article  CAS  Google Scholar 

  19. Flockerzi, V. et al. Nature 323, 66–68 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Smith, J. S. et al. Biochem. 26, 7182–7188 (1987).

    Article  CAS  Google Scholar 

  21. Rios, E. & Brum, G. Nature 325, 717–720 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilven, J., Coronado, R. Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate. Nature 336, 587–589 (1988). https://doi.org/10.1038/336587a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336587a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing