Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms

Abstract

The conflict between the Mendelian theory of participate inheritance1 and the observation of continuous variation for most traits in nature was resolved in the early 1900s by the concept that quantitative traits can result from segregation of multiple genes, modified by environmental effects2–5. Although pioneering experiments6–9 showed that linkage could occasionally be detected to such quantitative trait loci (QTLs), accurate and systematic mapping of QTLs has not been possible because the inheritance of an entire genome could not be studied with genetic markers7. The use of restriction fragment length polymorphisms10 (RFLPs) has made such investigations possible, at least in principle. Here, we report the first use of a complete RFLP linkage map to resolve quantitative traits into discrete Mendelian factors, in an interspecific back-cross of tomato. Applying new analytical methods, we mapped at least six QTLs controlling fruit mass, four QTLs for the concentration of soluble solids and five QTLs for fruit pH. This approach is broadly applicable to the genetic dissection of quantitative inheritance of physiological, morphological and behavioural traits in any higher plant or animal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mendel, G. Verh. naturf. Ver. in Brunn. 4, (1868).

  2. Johannsen, W. Elemente der exakten Erblichkeitsllehre (Fischer, Jena, 1909).

    Google Scholar 

  3. Nilsson-Ehle, H. Kreuzunguntersuchungen an Hafer und Weizen (Lund, 1909).

    Google Scholar 

  4. East, E. M. Genetics 1, 164–176 (1915).

    Google Scholar 

  5. Wright, S. Evolution and the Genetics of Populations (University of Chicago Press, 1968).

    Google Scholar 

  6. Sax, K. Genetics 8, 552–556 (1923).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Thoday, J. M. Nature 191, 368–369 (1961).

    Article  ADS  Google Scholar 

  8. Tanksley, S. D., Medina-Filho, H. & Rick, C. Heredity 49, 11–25 (1982).

    Article  Google Scholar 

  9. Edwards, M. D., Stuber, C. W. & Wendel, J. F. Genetics 116, 113–125 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Am. J. hum. Genet. 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chmielewski, T. Genet. pol. 9, 97–124 (1968).

    Google Scholar 

  12. Rick, C. M. Hilgardia 42, 493–510 (1974).

    Article  Google Scholar 

  13. Tanksley, S. D. & Hewitt, J. Theor. appl. Genet. 75, 811–823 (1988).

    Article  CAS  Google Scholar 

  14. Tanksley, S. D., Miller, J., Paterson, A. & Bernatzky, R. Proc. 18th Stadler Genet. Symp. (in the press).

  15. Lander, E. S. et al. Genomics 1, 174–181 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Lander, E. S. & Botstein, D. Genetics (in the press).

  17. Ott, J. Analysis of Human Genetic Linkage (Johns Hopkins, Baltimore, 1985).

    Google Scholar 

  18. Simmonds, N. W. Principles of Crop Improvement, 82–85 (Longman, New York, 1981).

    Google Scholar 

  19. Lande, R. Heredity 50, 47–65 (1983).

    Article  Google Scholar 

  20. Shrimpton, A. E. & Robertson, A. Genetics 11, 445–459 (1988).

    Google Scholar 

  21. Yeager, A. F. J. Hered. 18, 263–265 (1927).

    Article  Google Scholar 

  22. Emery, G. C. & Munger, H. M. J. Am. Soc. Hort. Sci. 95, 410–412 (1966).

    Google Scholar 

  23. Zamir, D. & Tadmor, Y. Bot. Gaz. 147, 355–358 (1986).

    Article  Google Scholar 

  24. Tanksley, S. D. in Isozymes in Plant Genetics and Breeding (eds Tanksley, S. D. & Orton, T. J.) 331–338 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  25. Rick, C. M. in Genes, Enzymes and Populations (ed. A. M. Srb) 255–268 (Plenum, New York, 1973).

    Book  Google Scholar 

  26. Harlan, J. R. Crop Sci. 16, 329–333 (1976).

    Article  Google Scholar 

  27. Festing, M. F. W. Inbred Strains in Biomedical Research (Oxford, New York, 1979).

    Book  Google Scholar 

  28. Coyne, J. A. & Charlesworth, B. Heredity 57, 243–246 (1986).

    Article  PubMed  Google Scholar 

  29. Helentjaris, T. Trends Genet. 3, 217–221 (1987).

    Article  CAS  Google Scholar 

  30. Landry, B. S., Kessell, R., Leung, H. & Michelmore, R. W. Theor. appl. Genet. 74, 646–653 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Burr, B., Burr, F. A., Thompson, K. H., Albertsen, M. C. & Stuber, C. W. Genetics 118, 519–526 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang, C., Bowman, J. L., DeJohn, A. W., Lander, E. S. & Meyerowitz, E. M. Proc. natn. Acad. Sci. U.S.A. 68, 6856–6860.

  33. McCouch, S. R. et al. Theor. appl. Genet. (in the press).

  34. Bonierbale, M. W., Plaisted, R. L. & Tanksley, S. D. Genetics (in the press).

  35. Franklin, I. A. Theor. Papulat. Biol. 11, 60–80 (1977).

    Article  CAS  Google Scholar 

  36. Stam, P. Genet. Res. 25, 131–155 (1980).

    Article  Google Scholar 

  37. Kosambi, D. D. Ann. Eugen. 12, 172–175 (1944).

    Article  Google Scholar 

  38. Tanksley, S. D. & Rick, C. M. Theor. appl. Genet. 57, 161–170 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterson, A., Lander, E., Hewitt, J. et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726 (1988). https://doi.org/10.1038/335721a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335721a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing