Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Small-scale analog applications of high-transition-temperature superconductors

Abstract

The first practical applications of high temperature superconductors are likely to be small-scale electronic devices such as detectors or analog processors. Several types of superconducting quantum interference devices SQUIDs have already been operated successfully as detectors of magnetic fields. But although operation at higher temperatures, say 77 K, will be more convenient, the sensitivity of all detectors inevitably be degraded.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bednorz, J. G. & Müller, K. A. Z. Phys. B64, 189–193 (1986).

    Article  ADS  Google Scholar 

  2. Wu, M. K. et al. Phys. Rev. Lett. 58, 908–910 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Superconducting Machines and Devices (eds Schwartz, B. B. & Foner, D.) 1–692 (Plenum, New York, 1974).

  4. Proceedings of the Applied Superconductivity Conf. IEEE Trans. Magn. MAG-17, no. 1 (1981); MAG-19, no. 2 (1983); MAG-21, no. 3 (1985); MAG-23, no. 2 (1987).

  5. Superconductor Applications: SQUIDs and Machines (eds Schwartz, B. B. & Foner, S.) 1–737 (Plenum, New York, 1977).

  6. IEEE Trans. Electron. Devices ED-27 No. 10 (1980).

  7. Proceedings of the International Conferences on Superconducting Quantum Interference Devices and their Applications (eds Hahlbohm, H. D. & Lübbig, H.) (de Gruyter, Berlin, 1977, 1980, 1985).

  8. Clarke, J. Physics Today 39, 36–44 (1986).

    Article  Google Scholar 

  9. Josephson, B. D. Phys. Lett. 1, 251–252 (1962).

    Article  ADS  Google Scholar 

  10. IBM J. Res. Dev. 24, 107–264 (1980).

  11. Ketchen, M. B., Herrell, D. J. & Anderson, C. J. J. appl. Phys. 57, 2550–2574 (1985).

    Article  ADS  Google Scholar 

  12. Rowell, J. M., Gurvitch, M. & Geerk, J. Phys. Rev. B24, 2278–2281 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Anderson, P. W. & Dayem, A. H. Phys. Rev. Lett. 13, 195–197 (1964).

    Article  ADS  Google Scholar 

  14. Ralston, R. W. IEEE Trans. Magn. MAG-21, 181–185 (1985).

  15. Withers, B. S., Anderson, A. C., Green, J. B. & Reible, S. A. IEEE Trans. Magn. MAG-21, 186–192 (1985).

  16. Reible, S. A. IEEE Trans. Magn. MAG-21, 193–196 (1985).

  17. Faris, S. M. Appl. Phys. Lett. 36, 1005–1007 (1980).

    Article  ADS  Google Scholar 

  18. Tuckerman, D. B. Appl. Phys. Lett. 36, 1008–1010 (1980).

    Article  ADS  Google Scholar 

  19. Wolf, P., Van Zeghbroeck, B. J. & Deutsch, U. IEEE Trans. Magn. MAG-21 226–229 (1985).

  20. Gallagher, W. J. et al. Appl. Phys. Lett. 50, 350–352 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Hamilton, C. A., Lloyd, F. L. & Kautz, R. L. IEEE Trans. Magn. MAG-21, 197–199 (1985).

  22. Petersen, D. A. et al. IEEE Trans. Magn. MAG-21, 200–203 (1985).

  23. Parker, W. H., Langenberg, D. N., Denenstein, A. & Taylor, B. N. Phys Rev. 177, 639–664 (1969).

    Article  ADS  Google Scholar 

  24. Kautz, R. L., Hamilton, C. A. & Lloyd, F. L. IEEE Trans. Magn. MAG-23, 883–890 (1987).

  25. Tucker, J. R. & Feldman, M. J. Rev. mod. Phys. 57, 1055–1113 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Rudner, S. & Claeson, T. Proceedings of the International Conference on Superconducting Quantum Interference Devices and their Applications (eds Hahlbohm, H. D. & Lübbig, H.) 963–985 (de Gruyter, Berlin, 1985).

    Google Scholar 

  27. Gundlach, K. H., Blundell, R., Ibruegger, J. & Blum, E. J. Proceedings of the International Conference on Superconducting Quantum Interference Devices and their Applications, 987–997 (1985).

    Google Scholar 

  28. Face, D. W., Prober, D. E., McGrath, W. R. & Richards, P. L. Appl. Phys. Lett. 48, 1098–1100 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Clarke, J., Hoffer, G. I., Richards, P. L. & Yeh, N.-H. J. appl. Phys. 48, 4865–4879 (1977).

    Article  ADS  CAS  Google Scholar 

  30. Clarke, J. Superconductor Applications: SQUIDs and Machines (eds Schwartz, B. B. & Foner, S.) 67–124 (Plenum, New York, 1977).

    Book  Google Scholar 

  31. Clarke, J. IEEE Trans. Electron Devices ED-27, 1896–1908 (1980).

  32. Ketchen, M. B. & Jaycox, J. M. Appl. Phys. Lett. 40, 736–738 (1982).

    Article  ADS  Google Scholar 

  33. Cromar, M. W. & Carelli, P. Appl. Phys. Lett. 38, 723–725 (1981).

    Article  ADS  Google Scholar 

  34. Voss, R. F. et al. IEEE Trans. Magn. MAG-17, 395–399 (1981).

  35. Van Harlingen, D. J., Koch, R. H. & Clarke, J. Appl. Phys. Lett. 41, 197–199 (1982).

    Article  ADS  Google Scholar 

  36. Tesche, C. D. & Clarke, J. J. Low Temp. Phys. 29, 301–331 (1977).

    Article  ADS  Google Scholar 

  37. Pegrum, C. M. & Donaldson, G. B. International Superconductivity Electronics Conf., Tokyo, 1987.

  38. Rogers, C. T. & Burhman, R. A. Phys. Rev. Lett. 53, 1272–1275 (1984).

    Article  ADS  Google Scholar 

  39. Tesche, C. D. et al. Proc. 17th Int. Conf. on Low Temperature Physics (eds Eckern, U., Schmid, A., Weber, W. & Wuhl, H.) 263–264 (North-Holland, New York, 1984).

    Google Scholar 

  40. Foglietti, V. et al. Appl. Phys. Lett. 49, 1393–1395 (1986).

    Article  ADS  CAS  Google Scholar 

  41. Koch, R. H. et al. J. Low Temp. Phys. 51, 207–224 (1983).

    Article  ADS  Google Scholar 

  42. Colclough, M. S. et al. Nature 328, 47–48 (1987).

    Article  ADS  CAS  Google Scholar 

  43. Pegrum, C. M., Donaldson, G. B., Carr, A. H. & Hendry, A. Appl. Phys. Lett. 51, 1364–1366 (1987).

    Article  ADS  CAS  Google Scholar 

  44. Zimmerman, J. E., Beall, J. A., Cromar, M. W. & Ono, R. H. Appl. Phys. Lett. 51, 617–618 (1987).

    Article  ADS  CAS  Google Scholar 

  45. Iguchi, I., Sugishita, A. & Yanagisawa, M. Jap. J. appl. Phys. (in the press).

  46. Koch, R. H., Umbach, C. P., Clark, G. J., Chaudhari, P. & Laibowitz, R. B. Appl. Phys. Lett. 51, 200–202 (1987).

    Article  ADS  CAS  Google Scholar 

  47. Nakane, H., Tarutani, Y., Nishino, T., Yamada, H. & Kawabe, U. Jap. J. appl. Phys. 26, L1925–1926 (1987).

    Article  ADS  CAS  Google Scholar 

  48. Hayakawa, H. Physics Today 39, 46–52 (1986).

    Article  Google Scholar 

  49. Richards, P. L. Physics Today 39, 54–62 (1986).

    Article  Google Scholar 

  50. Ferrari, M. J., Johnson, M., Wellstood, F. C., Clarke, J., Rosenthal, P., Hammond, R. & Beasley, M. R., March Meeting of the American Physical Society, New Orleans, LA, March 23, 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, J. Small-scale analog applications of high-transition-temperature superconductors. Nature 333, 29–35 (1988). https://doi.org/10.1038/333029a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/333029a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing