Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of microtubule dynamics in living cells

Abstract

The study of cell locomotion is fundamental to such diverse processes as embryonic development, wound healing and metastasis. Since microtubules play a role in establishing the leading lamellum and maintaining cell polarity1–5, it is important to understand their dynamic behaviour. In vitro, subunits exchange with polymer by treadmilling6,7 and by dynamic instability8,9. Disassembly events can be complete10 (catastrophic) or incomplete11 (tempered). In vivo, microtubules are in dynamic equilibrium with subunits12 with a half-time for turnover of 4–20 min13–15. Microtubules grow by elongation of their ends14,16 and are replaced one by one with turnover being most rapid at the periphery15. Although previous results are consistent with dynamic instability, we sought to directly test the mechanism of turnover. Direct observations of fluorescent microtubules in the fibroblast lamellum show that individual microtubules undergo rounds of assembly and disassembly from the same end. Reorganization of the microtubule network occurs by a tempered mode of dynamic instability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schliwa, M. The Cytoskeleton (Springer, Vienna, 1986).

    Google Scholar 

  2. Kirschner, M. & Mitchison, T. Cell 45, 329–342 (1986).

    Article  CAS  Google Scholar 

  3. Vasiliev, J. M. & Gelfand, I. M. in Cell Motility (eds Goldman, R., Pollard, T. D. & Rosenbaum, J.) 279–364 (Cold Spring Harbor Laboratory, New York, 1976).

    Google Scholar 

  4. Gottlieb, A. I., May, L. M., Subrahmanyan, L. & Kalnins, V. I. J. cell Biol. 91, 539–594 (1981).

    Google Scholar 

  5. Kupfer, A., Louvard, D. & Singer, S. J. Proc. natn. Acad. Sci. U.S.A. 79, 2603–2607 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Margolis, R. L. & Wilson, L. Cell 13, 1–8 (1978).

    Article  CAS  Google Scholar 

  7. Farrell, K. W., Jordan, M. A., Miller, H. P. & Wilson, L. J. cell Biol. 104, 1035–1046 (1987).

    Article  CAS  Google Scholar 

  8. Mitchison, T. & Kirschner, M. Nature 312, 232–237 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Mitchison, T. & Kirschner, M. Nature 312, 237–242 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Kristofferson, D., Mitchison, T. & Kirschner, M. J. cell Biol. 102, 1007–1019 (1986).

    Article  CAS  Google Scholar 

  11. Horio, H. & Hotani, H. Nature 321, 605–607 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Inoue, S. & Sato, H. J. Gen. Physiol. 50, 259–292 (1967).

    Article  CAS  Google Scholar 

  13. Saxton, W. M. et al. J. cell Biol. 99, 2175–2186 (1986).

    Article  Google Scholar 

  14. Schulze, E. & Kirschner, M. J. cell Biol. 102, 1020–1031 (1986).

    Article  CAS  Google Scholar 

  15. Sammak, P. J., Gorbsky, G. J. & Borisy, G. G. J. cell Biol. 104, 395–405 (1987).

    Article  CAS  Google Scholar 

  16. Soltys, B. J. & Borisy, G. G. J. cell Biol. 100, 1682–1689 (1985).

    Article  CAS  Google Scholar 

  17. Sammak, P. J. & Borisy, G. G. Cell Mot. Cytoskel. 9 (in the press).

  18. Osborn, M. & Weber, K. Meth. Cell Biol. 24, 97–131 (1982).

    Article  CAS  Google Scholar 

  19. Koonce, M. P., Tong, J., Euteneuer, U. & Schliwa, M. Nature 328, 737–739 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Chen, Y. & Hill, T. L. Proc. natn. Acad. Sci. U.S.A. 82, 4127–4131 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Aberchrombie, M. Proc. R. Soc. B207, 129–147 (1980).

    ADS  Google Scholar 

  22. Inoue, S. Video Microscopy (Plenum, New York, 1986).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sammak, P., Borisy, G. Direct observation of microtubule dynamics in living cells. Nature 332, 724–726 (1988). https://doi.org/10.1038/332724a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332724a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing