Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polarizing energy transfer in photoluminescent materials for display applications

Abstract

Combinations of sheet polarizers and colour filters form the basis of numerous products1,2,3,4 — most notably colour liquid-crystal displays2,4 — that require polarized chromatic light. But this combination of elements does not make efficient use of light, as a substantial fraction of the incident light is converted into thermal energy3,4, limiting the brightness and energy efficiency of the resulting devices. Here we show that these limitations can be overcome by using polymer-based photoluminescent polarizers. Our polarizers operate on a two-step principle: randomly orientated ‘sensitizer’ molecules harvest the incident light by isotropic absorption and then efficiently transfer the energy to a uniaxially orientated photoluminescent polymer, from which coloured light with a high degree of linear polarization is emitted. In principle, isotropic-to-polarized conversion efficiencies approaching unity could be attainable by this approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structures of compounds used.
Figure 2: Polarized absorption spectra of orientated films.
Figure 3: Emission spectra of orientated films obtained under isotropic excitation at 365 nm.
Figure 4: Emission spectra of orientated films.
Figure 5: Photophysical processes and optical emission.

Similar content being viewed by others

References

  1. Kliger, D. S., Lewis, J. W. & Randall, C. E. Polarized Light in Optics and Spectroscopy (Academic, San Diego, 1990).

    Google Scholar 

  2. Chan, L. K. M. in The Encyclopedia of Advanced MaterialsVol. 2 (eds Bloor, D., Brook, R. J., Flemings, M. C. & Mahajan, S.) 1294–1304 (Elsevier Science, Oxford, 1994).

    Google Scholar 

  3. Drzaic, P. J. Liquid Crystal Dispersions (World Scientific, Singapore, 1995).

    Book  Google Scholar 

  4. Nelson, T. J. & Wullert, J. R. II Electronic Information Display Technologies (World Scientific, Singapore, 1997).

    Book  Google Scholar 

  5. Schadt, M. & Fünfschilling, J. New liquid crystal polarized color projection principle. Jpn J. Appl. Phys. 29, 1974–1984 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Broer, D. J., Lub, J. & Mol, G. N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378, 467–469 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Coates, D.et al. New applications of liquid crystals and liquid crystal polymers. SID 96 Applications Digest SID Int. Symp. Vol. 27, 67–70 (Soc. for Information Display, Santa Ana, 1996).

    Google Scholar 

  8. Wortman, D. L. Arecent advance in reflective polarizer technology. SID 97 Applications Digest SID Int. Symp. Vol. 28(Information Display, Santa Ana, in the press).

  9. Dirix, Y. Polarizers Based on Anisotropic Absorbance or Scattering of Light.Thesis, Tech. Univ. Eindhoven((1997).

    Google Scholar 

  10. Hagler, T. W.et al. Highly ordered conjugated polymers in polyethylene: orientation by mesoepitaxy. Polymer Commun. 32, 339–342 (1991).

    CAS  Google Scholar 

  11. Weder, C., Sarwa, C., Bastiaansen, C. & Smith, P. Highly polarized luminescence from oriented conjugated polymer/polyethylene blend films. Adv. Mater. 9, 1035–1039 (1997).

    Article  CAS  Google Scholar 

  12. Weder, C., Sarwa, C., Montali, A., Bastiaansen, C. & Smith, P. New photoluminescent display devices. Science 279, 835–837 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Weder, C., Sarwa, C., Bastiaansen, C. & Smith, P. Photoluminescent display devices.European Patent Application No. 97111229.7((1997).

  14. Tessler, N., Denton, G. J. & Friend, R. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Weder, C. & Wrighton, M. S. Efficient solid-state photoluminescence in new poly(2, 5-dialkoxy-p-phenyleneethynylene)s. Macromolecules 29, 5157–5165 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Guillet, J. Polymer Photophysics and Photochemistry (Cambridge Univ. Press, New York, 1985).

    Google Scholar 

  17. Webber, S. E. Photon-harvesting polymers. Chem. Rev. 90, 1469–1482 (1990).

    Article  CAS  Google Scholar 

  18. Vekshin, N. L. Energy Transfer in Macromolecules (SPIE Optical Engineering Press, Washington, 1997).

    Google Scholar 

  19. Gilbert, A. & Baggot, J. Essentials of Molecular Photochemistry (Blackwell Science, Cambridge, 1997).

    Book  Google Scholar 

  20. Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 2, 55–75 (1948).

    Article  Google Scholar 

  21. Dexter, D. L. Atheory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953).

    Article  ADS  CAS  Google Scholar 

  22. Knox, R. S. Theory of Excitons (Academic, New York, 1963).

    MATH  Google Scholar 

  23. Wudl, F. & Srdanov, G. Conducting polymer formed of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-p-phenylenevinylene). US Patent No. 5189136((1993).

  24. Weder, C., Bastiaansen, C., Montali, A. & Smith, P. Efficient photoluminescent polarizers, process for forming and application in devices. European Patent Application No. 98101520.9((1998).

Download references

Acknowledgements

We thank Ir. J. Visjager for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Weder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montali, A., Bastiaansen, C., Smith, P. et al. Polarizing energy transfer in photoluminescent materials for display applications. Nature 392, 261–264 (1998). https://doi.org/10.1038/32616

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32616

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing