Received 7 July; accepted 21 September 1998

1. Dalbey, R. E., Lively, M. O., Bron, S. \& van Dijl, J. M. The chemistry and enzymology of the type 1 signal peptidases. Protein Sci. 6, 1129-1138 (1997).
2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274-280 (1993)
3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935-3941 (1995)
4. Allsop, A. E. et al. in Anti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships (eds Bently, P. H. \& O'Hanlon, P. J.) 61-72 (R. Soc. Chem., Cambridge, 1997).
5. Black, M. T. \& Bruton, G. Inhibitors of bacterial signal peptidases. Curr. Pharm. Des. 4, 133-154 (1998)
6. Date, T. Demonstration by a novel genetic technique that leader peptidase is an essential enzyme in Escherichia coli. J. Bacteriol. 154, 76-83 (1983).
7. Whitely, P. \& von Heijne, G. The DsbA-DsbB system affects the formation of disulfide bonds in periplasmic but not in intramembraneous protein domains. FEBS Lett. 332, 49-51 (1993).
8. Peat, T. S. et al. Structure of the UmuD' protein and its regulation in response to DNA damage. Nature 380, 727-730 (1996).
9. Paetzel, M. et al. Crystallization of a soluble, catalytically active form of Escherichia coli leader peptidase. Proteins Struct. Funct. Genet. 23, 122-125 (1995).
10. van Klompenburg, W. et al. Phosphatidylethanolamine mediated insertion of the catalytic domain of leader peptidase in membranes. FEBS Lett. 431, 75-79 (1998).
11. Kim, Y. T., Muramatsu, T. \& Takahashi, K. Identification of Trp 300 as an important residue for Escherichia coli leader peptidase activity. Eur. J. Biochem. 234, 358-362 (1995)
12. Landolt-Marticorena, C., Williams, K. A., Deber, C. M. \& Reithmeirer, R. A. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J. Mol. Biol. 229, 602-608 (1993).
13. James, M. N. G. in Proteolysis and Protein Turnover (eds Bond, J. S. \& Barrett, A. J.) 1-8 (Portland, Brookfield, VT, 1994).
14. Strynadka, N. C. J. et al. Molecular structure of the acyl-enzyme intermediate in $\beta$-lactamase at $1.7 \AA$ resolution. Nature 359, 393-400 (1992)
15. Manard, R. \& Storer, A. C. Oxyanion hole interactions in serine and cysteine proteases. Biol. Chem. Hoppe-Seyler 373, 393-400 (1992).
16. Nicolas, A. et al. Contribution of cutinase Ser 42 side chain to the stabilization of the oxyanion transition state. Biochemistry 35, 398-410 (1996).
17. Paetzel, M. et al. Use of site-directed chemical modification to study an essential lysine in Escherichia coli leader peptidase. J. Biol. Chem. 272, 9994-10003 (1997)
18. Paetzel, M. \& Dalbey, R. E. Catalytic hydroxyl/amine dyads with serine proteases. Trends Biochem. Sci 22, 28-31 (1997)
19. von Heijne, G. Signal sequences. The limits of variation. J. Mol. Biol. 184, 99-105 (1985)
20. Izard, J. W. \& Kendall, D. A. Signal peptides: exquisitely designed transport promoters. Mol. Microbiol 13, 765-773 (1994).
21. Matthews, B. W. Solvent content of protein crystals. J. Mol. Biol. 33, 491-497 (1968).
22. Otwinowski, Z. in DENZO (eds Sawyer, L., Isaacs, N. \& Baily, S.) 56-62 (SERC Daresbury Laboratory, Warrington, UK, 1993).
23. Collaborative Computational Project No. 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760-763 (1994).
24. Jones, T. A., Zou, J. Y., Cowan, S. W. \& Kieldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110-119 (1991).
25. Brunger, A. T. X-PLOR: A System for X-ray Crystallography and NMR (Version 3.1) (Yale Univ. Press, New Haven, 1987).
26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the refinement of macromolecules. Acta Crystallogr. A 48, 912-916 (1992).
27. Wolfe, P. B., Wickner, W. \& Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073-12080 (1983).
28. Kraulis, P. G. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946-950 (1991).
29. Nicholls, A., Sharp, K. A. \& Honig, B. Protein folding and association: insights from the interfacial and the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281-296 (1991).
30. Meritt, E. A. \& Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505524 (1997).

Acknowledgements. We thank SmithKlineBeecham Pharmaceuticals for penem inhibitor; R. M. Sweet for use of beamline X12C (NSLS, Brookhaven National Laboratory); G. Petsko for the ethylmercury phosphate; M. N. G. James for access to equipment for characterization of earlier crystal forms of SPase; and S. Mosimann and S. Ness for discussions. This work was supported by the Medical Research Council of Canada, the Canadian Bacterial Diseases Network of Excellence, and British Columbia Medical Research Foundation grants to N.C.J.S. M.P. is funded by an MRC of Canada post-doctoral fellowship, N.C.J.S. by an MRC of Canada scholarship, and R.E.D. by the NIH and the American Heart Association.

Correspondence and requests for materials should be addressed to N.C.J.S. (e-mail: natalie@byron. biochem.ubc.ca).

## errata

## Reconciling the spectrum of Sagittarius A* with a two-temperature <br> plasma model

Rohan Mahadevan

Nature 394, 651-653 (1998)
A misleading typographical error was introduced into the second sentence of the bold introductory paragraph of this Letter: the word "infrared" should be "inferred".

# Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence 

S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles,<br>N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M.-A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead \& B. G. Barrell

Nature 393, 537-544 (1998)
As a result of an error during film output, Table 1 was published with some symbols missing. The correct version can be found at http://www.sanger.ac.uk and is reproduced again here (following pages).

Also, in Fig. 2, we incorrectly labelled Rv0649 as fadD37 instead of fabD2. Two of the genes for mycolyl transferases were inverted: Rv0129c encodes antigen 85C and not 85C' as stated, whereas Rv3803c codes for the secreted protein MPT51 and not antigen 85C (Infect. Iттип. 59, 372-382; 1991); Rv3803c is now designated fbpD. We thank Morten Harboe and Harald Wiker for drawing this to our attention.

The sequence of Rv0746 from M. bovis BCG-Pasteur presented in Fig. 5b was incorrect and should have shown a 16-codon deletion instead of 29 , as indicated here:
H37Rv . . . . . GSGAPGGAGGAAGLWGTGGAGGAGGSSAGGGGAGGAGGAGGWLLGDGGAGGIGGAST . . .


Table 1. Functional classification of Mycobacterium tuberculosis protein-coding genes

| I. Small-molecule metabolism <br> A. Degradation |  |  |
| :---: | :---: | :---: |
| 1. Carbon compounds |  |  |
| Rv0186 | bgis | $\beta$-glucosidase |
| Rv2202c | cbhk | carbohydrate kinase |
| Rv0727c | fuca | L-fuculose phosphate aldolase |
| Rv1731 | gabD1 | succinate-semialdehyde dehydrogenase |
| Rv0234c | gabD2 | succinate-semialdehyde dehydrogenase |
| Rv0501 | galE1 | UDP-glucose 4-epimerase |
| Rv0536 | galE2 | UDP-glucose 4-epimerase |
| Rv0620 | galK | galactokinase |
| Rv0619 | galt | galactose-1-phosphate uridylyltransferase C-term |
| Rv0618 | gait ${ }^{\text {c }}$ | galactose-1-phosphate uridylyltransferase N -term |
| Rv0993 | galu | UTP-glucose-1-phosphate uridylyltransterase |
| Rv3696c | glok | ATP:glycerol 3-phosphotransferase |
| Rv3255c | manA | mannose-6-phosphate isomerase |
| Rv3441c | mrsA | phosphoglucomutase or phosphomannomutase |
| Rv0118c | oxcA | oxalyl-CoA decarboxylase |
| Rv3068c | pgmA | phosphoglucomutase |
| Rv3257c | pmmA | phosphomannomutase |
| Rv3308 | pmmB | phosphomannomutase |
| Rv2702 | ppgK | polyphosphate glucokinase |
| Rv0408 | pta | phosphate acetyltransferase |
| Rv0729 | $x y / B$ | xylulose kinase |
| Rv1096 | - | carbohydrate degrading enzyme |
| 2. Amino acids and amines |  |  |
| Rv1905c | aao | D-amino acid oxidase |
| Rv2531c | adi | ornithine/arginine decarboxylase |
| Rv2780 | ald | L-alanine dehydrogenase |
| Rv1538c | ansA | L-asparaginase |
| Rv1001 | arcA | arginine deiminase |
| Rv0753c | $m m s A$ | methylmalmonate semialdehyde dehydrogenase |
| Rv0751c | mmsB | methylmalmonate semialdehyde oxidoreductase |
| Rv1187 | rocA | pyrroline-5-carboxylate dehydrogenase |
| Rv2322c | rocD1 | ornithine aminotransferase |
| Rv2321c | rocD2 | ornithine aminotransferase |
| Rv1848 | ureA | urease y subunit |
| Rv1849 | ureB | urease $\beta$ subunit |
| Rv1850 | ureC | urease $\alpha$ subunit |
| Rv1853 | ure D | urease accessory protein |
| Rv1851 | ureF | urease accessory protein |
| Rv1852 | ure $G$ | urease accessory protein |
| Rv2913c | - | probable D-amino acid aminohydrolase |
| Rv3551 | - | possible glutaconate CoAtransferase |
| 3. Fatty acids |  |  |
| Rv2501c | accal | acetylpropionyl-CoA carboxylase, $\alpha$ subunit |
| Rv0973c | accal | acety/propionyl-CoA carboxylase, $\alpha$ subunit |
| Rv2502c | accD1 | acetyl/propionyl-CoA carboxylase, $\beta$ subunit |
| Rv0974c | accD2 | acetyl/propionyl-CoA carboxylase, $\beta$ subunit |
| Rv3667 | acs | acetyl-CoA synthase |
| Rv3409c | chod | cholesterol oxidase |
| Rv0222 | echat | enoyl-CoA hydratase/isomerase superfamily |
| Rv0456c | echa2 | enoyl-CoA hydratase/isomerase superfamily |
| Rv0632c | echa3 | enoyl-CoA hydratase/isomerase superfamily |
| Rv0673 | echa4 | enoyl-CoA hydratase/isomerase superfamily |
| Rv0675 | echa5 | enoyl-CoA hydratase/isomerase superfamily |
| Rv0905 | echas | enoyl-CoA hydratase/isomerase superfamily (aka ecch) |
| Rv0971c | echa7 | enoy-CoA hydratase/isomerase superfamily |
| Rv1070c | echas | enoyl-CoA hydratase/isomerase superfamily |
| Rv1071c | echas | enoyl-CoA hydratase/isomerase superfamily |
| Rv1142c | echalo | enoyl-CoA hydratase/isomerase superfamily |
| Rv1141c | echalt | enoyl-CoA hydratase/isomerase superfamily |
| Rv1472 | echA12 | enoyl-CoA hydratase/isomerase superfamily |
| Rv1935c | echal3 | enoyl-CoA hydratase/isomerase superfamily |
| Rv2486 | echal4 | enoyl-CoA hydratase/isomerase superfamily |
| Rv2679 | echA15 | enoyl-CoA hydratase/isomerase |

 superfamily
enoyl-CoA

Rv3039c echa17
Rv3373 echa18
Rv3374 echA18
Rv3516 echat9
Rv3550 echA20
Rv3774 echa21
Rv0243 fadA2

Rv1074c fadA3
Rv3546 fadA5

| Rv3556c | fadAG |
| :--- | :--- |
| Rv0860 | fadB |


| Rv0468 | fadB2 |
| :--- | :--- |
| Rv1715 | fadB3 |

$\begin{array}{ll}\text { Rv3141 } & \text { fadB4 } \\ \text { Rv1912c } & \text { fadB5 }\end{array}$
$\begin{array}{ll}\text { Rv1750c } & \text { fadD1 } \\ \text { Rv0270 } & \text { fadD }\end{array}$
$\begin{array}{ll}\text { Rv3561 } & \text { fadD3 } \\ \text { Rv0214 } & \text { fadD4 }\end{array}$
$\begin{array}{lr}\text { Rv0166 } & \text { fadD5 } \\ \text { Rv1206 } & \text { fadD6 }\end{array}$
$\begin{array}{ll}\text { Rv0119 } & \text { fadD7 } \\ \text { Rv0551c } & \text { fadD8 }\end{array}$
$\begin{array}{ll}\text { Rv2590 } & \text { fadD9 } \\ \text { Rvoog9 } & \text { fadD } 10\end{array}$
Rv1550 fadD1
Rv1549
$\begin{array}{lll}\text { Rv1549 } & \text { fadD11' } & \text { acyl-CoA synthase, C-term } \\ \text { Rv1427c } & \text { fadD } 12 & \text { acyl-CoA synthase }\end{array}$
Rv3089 fadD13 acyl-CoA synthase
Rv1058 fadD14 acyl-CoA synthase
Rv2 187 fadD15 acyl-CoA synthase
Rv0852
Rv0852 fadD 16 acyl-CoA synthase
Rv3506 fadD17
Rv3506 fadD 17
$\begin{array}{ll}\text { Rv3513c } & \text { fadD } 18 \\ \text { Rv3515c } & \text { fadD19 }\end{array}$
Rv1185c fadD21
$\begin{array}{ll}\text { Rv2948c } & \text { fadD22 } \\ \text { Rv3826 } & \text { fadD23 }\end{array}$
$\begin{array}{ll}\text { Rv3826 } & \text { fadD23 } \\ \text { Rv1529 } & \text { fadD24 }\end{array}$
$\begin{array}{ll}\text { Rv1521 } & \text { fadD25 } \\ \text { Rv2930 } & \text { fadD26 }\end{array}$
Rv0275c fadD27
Rv2941 fadD28
Rv0404 fadD3
Rv1925 fadD3
Rv3801c fadD3
Rv1345 fadD33
Rvo035
$\begin{array}{ll}\text { Rv0035 } & \text { fadD34 } \\ \text { Rv2505c } & \text { fadD35 }\end{array}$
Rv1193 fadD36
$\begin{array}{ll}\text { Rvo131c } & \text { fadE1 } \\ \text { RvO154c } \\ \text { fadE? }\end{array}$
Rvo215c fadE3
$\begin{array}{ll}\text { Rvo231 } & \text { fadE4 } \\ \text { Rvo244c }\end{array}$
Rvo271c fadE6
Rvo 400 c fadE7
Rvo
Rv0752c fadE9
Rv0873 fadE10
Rvo972c fadE12
$\begin{array}{ll}\text { Rvo975c } & \text { fade13 } \\ \text { Rv1346 } & \text { fadE14 }\end{array}$
Rv1467c fadE1
$\begin{array}{ll}\text { Rv1679 } & \text { fadE16 } \\ \text { Rv1934c } & \text { fadE17 }\end{array}$
Rv1933c fadE18
Rv2500c fadE 19
Rv2724c fadE20
Rv2789c fadF21
Rv30619 fadE22
Rv3140 fadE2
Rv3139 fadE2
Rv3274c fadE2
Rv3504 fadE26
Rv3544c fadE28
acyl-COA synthase
acyl-CoA synthase
acyl-CoA synthase
acyl-CoA synthase acyl-CoA synthase acyl-COA synthase acyl-CoA synthase acyl-COA synthase acyl-CoA synthase acyl-CoA synthase acyl-CoA synthase acyl-CoA synthase acyl-CoA synthase acyl-COA synthase acyl-CoA synthase acyl-CoA synthase acyl-CoA synthase acyl-CoA synthase acyl-CoA synthase acyl-CoA dehydrogenase (aka aidB) acyl-CoA dehydrogenase acyl-CoA dehydrogenase acyl-CoA dehydrogenase acyl-CoA dehydrogenase acyl-CoA dehydrogenase acyl-CoA dehydrogenase
acyl-CoA dehydrogenase acyl-CoA dehydrogenase acyl-CoA dehydrogenase acyl-CoA dehydrogenase acyl-CoA dehydrogenase (aka mmgC)
acyl-CoA dehydrogenase acyl-CoA dehydrogenase

| Rv3543c | fadE29 | acyl-CoA dehydrogenase |
| :--- | :--- | :--- |
| Rv3560c | fadE30 | acyl-CoA dehydrogenase |
| Rv3562 | fadE31 | acyl-CoA dehydrogenase |
| Rv3563 | fadE32 | acyl-CoA dehydrogenase |
| Rv3564 | fadE33 | acyl-CoA dehydrogenase |
| Rv3573c | fadE34 | acyl-CoA dehydrogenase |
| Rv3797 | fadE35 | acyl-CoA dehydrogenase |
| Rv3761c | fadE36 | acyl-CoA dehydrogenase |
| Rv1175c | fadH | 2,4-Dienoyl-CoA Reductase |
| Rv0855 | far | fatty acyl-CoA racemase |
| Rv1143 | mcr | a-methyl acyl-CoA racemase |
| Rv1492 | mutA | methylmalonyl-CoA mutase, $\beta$ <br>  <br> Rv1493 |
|  | mutB | subunit <br> methylmalonyl-CoA mutase, $\alpha$ |
| Rv2504c | scoA | subunit |
| 3-oxo acid:CoA transferase, $\alpha$ sub- |  |  |
| Rv2503c | scoB | unit |
|  |  | 3-oxo acid:CoA transferase, $\beta$ sub- <br> unit |
| Rv1136 | - | probable carnitine racemase <br> Rv1683 |
|  |  | possible acyl-CoA synthase |

2. Pyruvate dehydrogenas

| Rv2241 | aceE | pyruvate dehydrogenase E1 com- <br> ponent |
| :--- | :--- | :--- |
| Rv3303c | $j p d A$ | dihydrolipoamide dehydrogenase <br> Rv2497c |
| $p d h A$ | pyruvate dehydrogenase E1 com- <br> ponent $\alpha$ subunit <br> pyruvate dehydrogenase E1 com- <br> ponent $\beta$ subunit <br> dihydrolipoamide acetyltransferase <br> Rv2496c | $p d h B$ |
| Rvobable dihydrolipoamide dehy- |  |  |
| Rrogenase |  |  |

## 3. TCA cycle

| Rv1475c | $a c n$ | aconitate hydratase |
| :---: | :---: | :---: |
| Rv0889c | citA | citrate synthase 2 |
| Rv2498c | citE | citrate lyase $\beta$ chain |
| Rv1098c | fum | fumarase |
| Rv1131 | gltat | citrate synthase 3 |
| Rv0896 | glta2 | citrate synthase 1 |
| Rv3339c | icd1 | isocitrate dehydrogenase |
| Rv0066c | icd 2 | isocitrate dehydrogenase |
| Rv0794c | $l p d B$ | dihydrolipoamide dehydrogenase |
| Rv1240 | $m d h$ | malate dehydrogenase |
| Rv2967c | рса | pyruvate carboxylase |
| Rv3318 | $s d^{\prime} A$ | succinate dehydrogenase A |
| Rv3319 | $s a h B$ | succinate dehydrogenase $B$ |
| Rv3316 | sahC | succinate dehydrogenase $C$ subunit |
| Rv3317 | $s d h D$ | succinate dehydrogenase $D$ subunit |
| Rv1248c | sucA | 2-oxoglutarate dehydrogenase |
| Rv2215 | sucB | dihydrolipoamide succinyltransferase |
| Rv0951 | sucC | succinyl-CoA synthase $\beta$ chain |
| Rv0952 | sucD | succinyl-CoA synthase $\alpha$ chain |
| 4. Glyoxylate bypass |  |  |
| Rv0467 | $a c e A$ | isocitrate lyase |
| Rv1915 | aceAa | isocitrate lyase, $\alpha$ module |
| Rv1916 | $a c e A b$ | isocitrate lyase, $\beta$ module |
| Rv1837c | $g / c B$ | malate synthase |
| Rv3323c | $g p h A$ | phosphoglycolate phosphatase |

5. Pentose phosphate pathway

Rv1445c devB glucose-6-phosphate 1-dehydrogenase
Rv1844c gnd 6-phosphogluconate dehydrogenase (Gram -) Rv1122 gnd2 6-phosphogluconate dehydrogeunknown function, may aid G6PDH

| Rv2436 | rbsk | ribokinase |
| :---: | :---: | :---: |
| Rv1408 | rpe | ribulose-phosphate 3-epimerase |
| Rv2465c | rpi | phosphopentose isomerase |
| Rv1448c | tal | transaldolase |
| Rv1449c | tkt | transketolase |
| Rv1121 | zwf | glucose-6-phosphate 1-dehydrogenase |
| Rv1447c | zwf2 | glucose-6-phosphate 1-dehydrogenase |
| 6. Respiration <br> a. aerobic |  |  |
| Rv0527 | $\operatorname{ccs} A$ | cytochrome c-type biogenesis protein |
| Rv0529 | $\operatorname{ccs} B$ | cytochrome c-type biogenesis protein |
| Rv1451 | cta ${ }^{\text {a }}$ | cytochrome $c$ oxidase assembly factor |
| Rv2200c | ctaC | cytochrome coxidase chain II |
| Rv3043c | ctaD | cytochrome $c$ oxidase polypeptide I |
| Rv2193 | ctaE | cytochrome $c$ oxidase polypeptide III |
| Rv1542c | $g l b N$ | hemoglobin-like, oxygen carrier |
| Rv2470 | glbo | hemoglobin-like, oxygen carrier |
| Rv2249c | gloD1 | glycerol-3-phosphate dehydrogenase |
| Rv3302c | $g l p D 2$ | glycerol-3-phosphate dehydrogenase |
| Rv0694 | IIdD1 | L-lactate dehydrogenase (cytochrome) |
| Rv1872c | Had2 | L-lactate dehydrogenase |
| Rv1854c | ndh | probable NADH dehydrogenase |
| Rv3145 | nuoa | NADH dehydrogenase chain A |
| Rv3146 | nuob | NADH dehydrogenase chain B |
| Rv3147 | nuoc | NADH dehydrogenase chain C |
| Rv3148 | nuod | NADH dehydrogenase chain D |
| Rv3149 | nuob | NADH dehydrogenase chain E |
| Rv3150 | nuof | NADH dehydrogenase chain $F$ |
| Rv3151 | nuoG | NADH dehydrogenase chain $G$ |
| Rv3152 | nuoh | NADH dehydrogenase chain H |
| Rv3153 | nuol | NADH dehydrogenase chain I |
| Rv3154 | nuod | NADH dehydrogenase chain J |
| Rv3155 | nuok | NADH dehydrogenase chain K |
| Rv3156 | nuol | NADH dehydrogenase chain L |
| Rv3157 | nuoM | NADH dehydrogenase chain M |
| Rv3158 | nuoN | NADH dehydrogenase chain N |
| Rv2195 | qcra | Rieske iron-sulphur component of ubiQ-cytB reductase |
| Rv2196 | qcrB | cytochrome $\beta$ component of ubiQcyt $B$ reductase |
| Rv2194 | qcrc | cytochrome $b / c$ component of ubiQ-cytB reductase |
| b. anaerobic |  |  |
| Rv2392 | cysH | 3'-phosphoadenylylsulfate (PAPS) reductase |
| Rv2899c | fdhD | affects formate dehydrogenase-N |
| Rv2900c | fdhF | molybdopterin-containing oxidoreductase |
| Rv1552 | frdA | fumarate reductase flavoprotein subunit |
| Rv1553 | $f r d B$ | fumarate reductase iron sulphur protein |
| Rv1554 | frac | fumarate reductase 15 kD anchor protein |
| Rv1555 | $f r d D$ | fumarate reductase 13 kD anchor protein |
| Rv1161 | narg | nitrate reductase $\alpha$ subunit |
| Rv1162 | narH | nitrate reductase $\beta$ chain |
| Rv1164 | narl | nitrate reductase $\gamma$ chain |
| Rv1163 | narj | nitrate reductase $\delta$ chain |
| Rv1736c | $n a r X$ | fused nitrate reductase |
| Rv2391 | nirA | probable nitrite reductase/sulphite reductase |
| Rv0252 | nirb | nitrite reductase flavoprotein |
| Rv0253 | nirD | probable nitrite reductase small subunit |
| c. Electron transport |  |  |
| Rv0409 | ackA | acetate kinase |
| Rv1623c | $a p p C$ | cytochrome $b d-/ /$ oxidase subunit I |
| Rv1622c | cydB | cytochrome $d$ ubiquinol oxidase subunit II |
| Rv1620c | cydC | ABC transporter |
| Rv1621c | cyd' ${ }^{\text {d }}$ | ABC transporter |
| Rv2007c | fdxA | ferredoxin |
| Rv3554 | $f d x B$ | ferredoxin |
| Rv1177 | fdxC | ferredoxin 4Fe-4S |
| Rv3503c | $f d x D$ | probable ferredoxin |
| Rv3029c | fix $A$ | electron transfer flavoprotein $\beta$ subunit |
| Rv3028c | fix $B$ | electron transfer flavoprotein $\alpha$ subunit |
| Rv3106 | fprA | adrenodoxin and NADPH ferredoxin reductase |
| Rv0886 | fprB | ferredoxin, ferredoxin-NADP reductase |
| Rv3251c | rubA | rubredoxin A |


| Rv3250c | $r u b B$ | rubredoxin B |
| :---: | :---: | :---: |
| 7. Miscellaneous oxidoreductases and oxygenases 171 |  |  |
| 8. ATP-proton motive force |  |  |
| Rv1308 | atpA | ATP synthase $\alpha$ chain |
| Rv1304 | atp $B$ | ATP synthase a chain |
| Rv1311 | atp $C$ | ATP synthase $\epsilon$ chain |
| Rv1310 | $a t p D$ | ATP synthase $\beta$ chain |
| Rv1305 | atpE | ATP synthase c chain |
| Rv1306 | atpF | ATP synthase b chain |
| Rv1309 | $\operatorname{atp} G$ | ATP synthase $\gamma$ chain |
| Rv1307 | atpH | ATP synthase $\delta$ chain |
| C. Central intermediary metabolism |  |  |
| 1. General |  |  |
| Rv2589 | gabT | 4-aminobutyrate aminotransferase |
| Rv3432c | gadB | glutamate decarboxylase |
| Rv1832 | gcvB | glycine decarboxylase |
| Rv1826 | gcvH | glycine cleavage system H protein |
| Rv2211c | gcvT | T protein of glycine cleavage system |
| Rv1213 | gigC | glucose-1-phosphate adenylyltransferase |
| Rv3842c | gIpQ1 | glycerophosphoryl diester phosphodiesterase |
| Rv0317c | glpQ2 | glycerophosphoryl diester phosphodiesterase |
| Rv3566c | nhoa | N -hydroxyarylamine 0 -acetyltransferase |
| Rv0155 | pntAA | pyridine transhydrogenase subunit $\alpha 1$ |
| Rv0156 | pntAB | pyridine transhydrogenase subunit $\alpha 2$ |
| Rv0157 | pntB | pyridine transhydrogenase subunit $\beta$ |
| Rv1127c | ppdK | similar to pyruvate, phosphate dikinase |
| 2. Gluconeogenesis |  |  |
| Rv0211 | pckA | phosphoenolpyruvate carboxykinase |
| Rv0069c | sdaA | L-serine dehydratase 1 |
| 3. Sugar nucleotides |  |  |
| Rv1512 | epiA | nucleotide sugar epimerase |
| Rv3784 | epiB | probable UDP-galactose 4epimerase |
| Rv1511 | gma $A$ | GDP-mannose 4,6 dehydratase |
| Rv0334 | $r m / A$ | glucose-1-phosphate thymidyltransferase |
| Rv3264c | rmiA2 | glucose-1-phosphate thymidyltransferase |
| Rv3464 | rmiB | dTDP-glucose 4,6-dehydratase |
| Rv3634c | rmiB2 | dTDP-glucose 4,6-dehydratase |
| Rv3468c | rmiB3 | dTDP-glucose 4,6-dehydratase |
| Rv3465 | rmic | dTDP-4-dehydrorhamnose 3,5-epimerase |
| Rv3266c | $r m i d$ | dTDP-4-dehydrorhamnose reductase |
| Rv0322 | $u d g A$ | UDP-glucose dehydrogenase/GDP-mannose 6dehydrogenase |
| Rv3265c | wbbl | dTDP-rhamnosyl transferase |
| Rv1525 | wbbl2 | dTDP-rhamnosyl transferase |
| Rv3400 | - | probable $\beta$-phosphoglucomutase |
| 4. Amino sugars |  |  |
| Rv3436c | gims | glucosamine-fructose-6phosphate aminotransferase |
| 5. Sulphur metabolism |  |  |
| Rv0711 | atsA | arylsulfatase |
| Rv3299c | ats $B$ | proable arylsulfatase |
| Rv0663 | ats D | proable arylsulfatase |
| Rv3077 | atsF | proable arylsulfatase |
| Rv0296c | ats $G$ | proable arylsulfatase |
| Rv3796 | atsH | proable arylsulfatase |
| Rv1285 | cys $D$ | ATP:sulphurylase subunit 2 |
| Rv1286 | cys N | ATP:sulphurylase subunit 1 |
| Rv2 131 c | cysQ | homologue of M.leprae cys $Q$ |
| Rv3248c | sahH | adenosylhomocysteinase |
| Rv3283 | sseA | thiosulfate sulfurtransferase |
| Rv2291 | sseB | thiosulfate sulfurtransferase |
| Rv3118 | sseC | thiosulfate sulfurtransferase |
| Rv0814c | sseC2 | thiosulfate sulfurtransferase |
| Rv3762c | - | probable alkyl sulfatase |
| D. Amino acid biosynthesis |  |  |
| 1. Glutamate family |  |  |
| Rv1654 | argB | acetylglutamate kinase |
| Rv1652 | argC | N -acetyl- $\gamma$-glutamyl-phosphate reductase |
| Rv1655 | $\arg D$ | acetylornithine aminotransferase |
| Rv1656 | argF | ornithine carbamoyltransferase |
| Rv1658 | argG | arginosuccinate synthase |
| Rv1659 | argH | arginosuccinate lyase |
| Rv1653 | argj | glutamate N -acetyltransferase |
| Rv2220 | ginat | glutamine synthase class I |
| Rv2222c | ginA2 | glutamine synthase class II |


| Rv1878 | gina3 | probable glutamine synthase |
| :---: | :---: | :---: |
| Rv2860c | ginA4 | proable glutamine synthase |
| Rv2918c | $\operatorname{gin} D$ | uridylyltransferase |
| Rv2221c | ginE | glutamate-ammonia-ligase adenyltransferase |
| Rv3859c | gitB | ferredoxin-dependent glutamate synthase |
| Rv3858c | gitd | small subunit of NADH-dependent glutamate synthase |
| Rv3704c | gshA | possible $\gamma$-glutamylcysteine synthase |
| Rv2427c | proA | $\gamma$-glutamyl phosphate reductase |
| Rv2439c | proB | glutamate 5 -kinase |
| Rv0500 | proC | pyrroline-5-carboxylate reductase |
| 2. Aspartate family |  |  |
| Rv3708c | asd | aspartate semialdehyde dehydrogenase |
| Rv3709c | ask | aspartokinase |
| Rv2201 | asnB | asparagine synthase B |
| Rv3565 | aspB | aspartate aminotransferase |
| Rv0337c | $a s p C$ | aspartate aminotransferase |
| Rv2753c | dapA | dihydrodipicolinate synthase |
| Rv2773c | dapB | dihydrodipicolinate reductase |
| Rv1202 | dapE | succinyl-diaminopimelate desuccinylase |
| Rv2141c | dapE2 | ArgE/DapE/Acy $1 / \mathrm{Cpg} 2 / \mathrm{yscS}$ family |
| Rv2726c | dapF | diaminopimelate epimerase |
| Rv1293 | lysA | diaminopimelate decarboxylase |
| Rv3341 | metA | homoserine $o$-acetyltransferase |
| Rv1079 | metB | cystathionine $\gamma$-synthase |
| Rv3340 | metC | cystathionine $\beta$-lyase |
| Rv1133c | metE | 5-methyltetrahydropteroyltrigluta-mate-homocysteine methyltransferase |
| Rv2124c | metH | 5-methyltetrahydrofolate-homocysteine methyltransferase |
| Rv1392 | metK | $S$-adenosylmethionine synthase |
| Rv0391 | metZ | o-succinylhomoserine sulfhydrylase |
| Rv1294 | thrA | homoserine dehydrogenase |
| Rvi296 | thrB | homoserine kinase |
| Rv1295 | thrc | homoserine synthase |
| 3. Serine family |  |  |
| Rv0815c | cysa2 | thiosulfate sulfurtransferase |
| Rv3117 | cysA3 | thiosulfate sulfurtransferase |
| Rv2335 | CysE | serine acetyltransferase |
| Rv0511 | cysG | uroporphyrin-III $c$-methyltransferase |
| Rv2847c | cysG2 | multifunctional enzyme, siroheme synthase |
| Rv2334 | cysk | cysteine synthase A |
| Rv1336 | cysM | cysteine synthase $B$ |
| Rv1077 | cysM2 | cystathionine $\beta$-synthase |
| Rv0848 | cysM3 | putative cysteine synthase |
| Rv1093 | glyA | serine hydroxymethyltransferase |
| Rv0070c | glyA2 | serine hydroxymethyltransferase |
| Rv2996c | serA | D-3-phosphoglycerate dehydrogenase |
| Rv0505c | serB | probable phosphoserine phosphatase |
| Rv3042c | serB2 | C-term similar to phosphoserine phosphatase |
| Rv0884c | serC | phosphoserine aminotransferase |
| 4. Aromatic amino acid family |  |  |
| Rv3227 | aroA | 3-phosphoshikimate 1-carboxyvinyl transferase |
| Rv2538c | arob | 3-dehydroquinate synthase |
| Rv2537c | arod | 3 -dehydroquinate dehydratase |
| Rv2552c | aroE | shikimate 5-dehydrogenase |
| Rv2540c | arof | chorismate synthase |
| Rv2178c | aroG | DAHP synthase |
| Rv2539c | arok | shikimate kinase I |
| Rv3838c | pheA | prephenate dehydratase |
| Rv1613 | $t r p A$ | tryptophan synthase $\alpha$ chain |
| Rv1612 | $\operatorname{trp} B$ | tryptophan synthase $\beta$ chain |
| Rv1611 | $t r p C$ | indole-3-glycerol phosphate synthase |
| Rv2192c | $t r p D$ | anthranilate phosphoribosyltransferase |
| Rv1609 | $t r p E$ | anthranilate synthase component I |
| Rv2386c | trpE2 | anthranilate synthase component I |
| Rv3754 | tyrA | prephenate dehydrogenase |
| 5. Histidine |  |  |
| Rv1603 | hisA | phosphoribosylformimino-5aminoimidazole carboxamide ribonucleotide isomerase |
| Rv1601 | his $B$ | imidazole glycerol-phosphate dehydratase |
| Rv1600 | hisc | histidinol-phosphate aminotransferase |
| Rv3772 | hisC2 | histidinol-phosphate aminotransferase |
| Rv1599 | hisD | histidinol dehydrogenase |


| Rv1605 | hisF | imidazole glycerol-phosphate synthase | Rv3048c | $n r d G$ | subunit <br> ribonucleoside-diphosphate small | Rv3119 | moaE | subunit 1 <br> molybdopterin-converting factor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rv2 121c | hisG | ATP phosphoribosyltransferase |  |  | bunit |  |  | bunit 2 |
| Rv1602 | hisH | amidotransferase | Rv3053c | $n \mathrm{rdH}$ | glutaredoxin electron transport | Rv0866 | moaE2 | olybdopterin-converting factor |
| Rv2 122c | hisl | phosphoribosyl-AMP cyclohydro- |  |  | component of NrdEF system |  |  | bunit 2 ar |
|  |  |  | Rv3052c | nrdl | $\mathrm{Nrd} / / \mathrm{YgaO} / \mathrm{YmaA}$ family | Rv3322c | moaE3 | olybdopterin-converting factor |
| Rv1606 | his/2 | probable phosphoribosyl-AMP 1,6 | Rv3247c | tmk | thymidylate kinase |  |  | subunit 2 |
|  |  | cyclohydrolase | Rv2764c | thyA | thymidylate synthase | Rv0994 | moeA | lybdopterin biosynthesis |
| Rv0114 |  | similar to HisB | Rv0570 | $n r d Z$ | ribonucleotide reductase, class | Rv3116 | moeB | molybdopterin biosynthesis |
|  |  |  | Rv3752c | - | bable cytidine/deoxycytidylate | Rv2338c | moel | lybdopterin biosynthesis |
| 6. | family |  |  |  | deaminase | Rv1681 | moeX | weak similarity to E. coli MoaA |
| Rv3423c | alr | alanine racemase |  |  |  | Rv1355c | moe $Y$ | weak similarity to E. coll MoeB |
|  |  |  | 4. Salvage | of nuc | sides and nucleotic | Rv3206c | moeZ | probably involved in |
| 7. Branch | d amino | cid family | Rv3313c | add | probable adenosine deaminase |  |  | molybdopterin biosynthesis |
| Rv1559 | ilva | threonine deaminase | Rv2584c | apt | adenine phosphoribosyltrans- | Rv0865 | mog | molybdopterin biosynthesis |
| Rv3003c | i/vB | acetolactate synthase I large subunit | Rv3315c | cdd | ferases probable cytidine deaminase | 5. Pantoth |  |  |
| Rv3470c | ilvB2 | acetolactate synthase large sub- | Rv3314c | deoA | thymidine phosphorylase | Rv1092c | coaa | pantothenate kinase |
|  |  |  | Rv0478 | deoc | deoxyribose-phosphate aldolase | Rv2225 | panB | 3 -methyl-2-oxobutanoate |
| Rv3001c | ilvc | ketol-acid reductoisomerase | Rv3307 | deod | probable purine nucleoside phos- |  |  | hydroxymethyltransferase |
| Rv0189c | ilvo | dihydroxy-acid dehydratase |  |  | phorylase | Rv3602c | panc | pantoate- $\beta$-alanine ligase |
| Rv2210c | i/ve | branched-chain-amino-acid transaminase | Rv3624c | hot | probable hypoxanthine-guanine phosphoribosyltransferase | Rv3601c | pand | aspartate 1 -decarboxylase |
| Rv1820 | ilvg | acetolactate synthase II | Rv3393 | iunH | probable inosine-uridine | 6. Pyridox |  |  |
| Rv3002c | ilvN | acetolactate synthase I small subunit | Rv0535 | pnp | preferring nucleoside hydrolase phosphorylase from $\mathrm{Pnp} / \mathrm{MtaP}$ | Rv2607 | pdxH | pyridoxamine 5 '-phosphate oxidase |
| Rv3509c | ilv $X$ | probable acetohydroxyacid syn- |  |  | family 2 |  |  |  |
|  |  | thase I large subunit | Rv3309c | upp | uracil phophoribosyltransfera | 7. Pyridin | nucleotic |  |
| Rv3710 | leua | $\alpha$-isopropyl malate synthase |  |  |  | Rv1594 | nadA | quinolinate synthase |
| Rv2995c | leuB | 3 -isopropylmalate dehydrogenase | 5. Miscella | neous nu | leoside/nucleotide reactions | Rv1595 | nadB | L-aspartate oxidase |
| Rv2988c | leuc | 3-isopropylmalate dehydratase large subunit | Rv0733 Rv2364c | $\begin{aligned} & \text { adk } \\ & \text { bex } \end{aligned}$ | probable adenylate kinase <br> GTP-binding protein of Era/ThdF | Rv1596 | nadC | nicotinate-nucleotide pyrophosphatase |
| Rv2987c | leud | 3 -isopropylmalate dehydratase small subunit | Rv1712 Rv2344c | $c m k$ | family cytidylate kinase | Rv0423c | thic | thiamine synthesis, pyrimidine moiety |
| E. Polyam | ine synt |  |  |  | triphosphate hydrolase | 8. Thiamin |  |  |
| Rv2601 | speE | spermidine synthase | Rv2404c | lepa | GTP-binding protein LepA | Rv0422c | thiD | phosphomethylpyrimidine kinase |
|  |  |  | Rv2727c | mia $A$ | tRNA $\delta(2)$-isopentenylpyrophos- | Rv0414c | thiE | thiamine synthesis, thiazole |
| 1. Purine | ibonucle | ide biosynthesis | Rv2445c | ndkA | nucleoside diphosphate kinase | Rv0417 | thig | thiamine synthesis, thiazole |
| Rv1389 | gmk | putative guanylate kinase | Rv2440c | obg | Obg GTP-binding protein |  |  | moiety |
| Rv3396c | gua $A$ | GMP synthase | Rv2583c | rela | (p)ppGpp synthase I | Rv2977c | thil | probable thiamine-monophos- |
| Rv1843c | guab1 | inosine-5'-monophosphate dehydrogenase | G. Bios | sis | 兂 |  |  | hate kinase |
| Rv3411c | guab2 | inosine-5'-monophosphate dehy- | carriers |  |  | 9. Riboflavi |  |  |
|  |  | drogenase | 1. Biotin |  |  | Rv1940 | ribA | GTP cyclohydrolase II |
| Rv3410c | guab3 | inosine-5'-monophosphate dehydrogenase | Rv1568 | bioA | adenosylmethionine-8-amino-7oxonoranoate aminotransferase | Rv1415 Rv1412 | ribA2 | probable GTP cyclohydrolase II riboflavin synthase a chain |
| Rv1017c | prsA | ribose-phosphate pyrophosphoki- | Rv1589 | biob | biotin synthase | Rv2671 | rib ${ }^{\text {d }}$ | probable riboflavin deaminase |
|  |  | nase | Rv1570 | biod | dethiobiotin synthase | Rv2786c | ribF | boflavin kin |
| Rv0357c | purA | adenylosuccinate synth | Rv1569 | biof | 8 -amino-7-oxononano | Rv1409 | ribG | riboflavin |
| Rv0777 | purB | adenylosuccinate lyase |  |  | synthase | Rv1416 | ribH | riboflavin synthase $\beta$ chain |
| Rv0780 | purC | phosphoribosylaminoimidazolesuccinocarboxamide synthase | Rv0032 | bioF2 | C-terminal similar to B. subtilis BioF | Rv3300c | - | probable deaminase, riboflavin synthesis |
| Rv0772 | purD | phosphoribosylamine-glycine lig- | Rv3279c | birA | biotin apo-protein ligase |  |  |  |
|  |  |  | Rv1442 | bisc | biotin sulfoxide reductase | 10. Thiore | doxin, glu | aredoxin and mycothiol |
| Rv3275c | purE | phosphoribosylaminoimidazole | Rv0089 |  | possible bioc biotin synthesis | Rvo773c | ggta | putative $\gamma$-glutamyl transpeptidase |
|  |  | carboxylase |  |  | gene | Rv2394 | ggtB | $\gamma$-glutamyltranspeptidase |
| Rv0808 | purF | amidophosphoribosyltransferase- |  |  |  |  |  | precursor |
| Rv0957 | purH | phosphoribosylaminoimidazole- | 2. Folic ac |  |  | Rv2855 | gorA | glutathione reductase homologue |
|  |  | carboxamide formyltransferase | Rv2763c | dfrA | dihydrofolate reductase | Rv0816c | thix | equivalent to $M$. leprae ThiX |
| Rv3276c | purk | phosphoribosylaminoimidazole | Rv2447c | folc | folylpolyglutamate synthase | Rv1470 | $t r \times A$ | thioredoxin |
|  |  | carboxylase ATPase subunit | Rv3356c | fold | methylenetetrahydrofolate dehy- | Rv1471 | trxB | thioredoxin reductase |
| Rv0803 | purl | phosphoribosylformylglycin- |  |  | drogenase | Rv3913 | trxB2 | thioredoxin reductase |
|  |  | amidine synthase II | Rv3609c | fole | GTP cyclohydrolase I | Rv3914 | tric | thioredoxin |
| Rv0809 | purM | 5'-phosphoribosyl-5-aminoimidazole synthase | Rv3606c | folk | 7,8-dihydro-6-hydroxymethylpterin pyrophosphokinase | 11. Men | uinone | QQ, ubiquinone and other |
| Rv0956 | purn | phosphoribosylglycinamide | Rv3608c | folp | dihydropteroate synthase | terpenoids |  |  |
|  |  | formyltransterase I | Rv1207 | folP2 | dihydropteroate synthase | Rv2682c | $d x s$ | 1-deoxy-D-xylulose 5-phosphate |
| Rv0788 | purQ | phosphoribosylformylglycinamidine synthase I | Rv3607c | fol $X$ | may be involved in folate biosynthesis | Rv0562 | grect | synthase heptaprenyl diphosphate |
| Rv0389 | pur $T$ | phosphoribosylglycinamide | Rv0013 | pabA | $p$-aminobenzoate synthase gluta- |  |  | synthase II |
|  |  | formyltransferase II |  |  | mine amidotransferase | Rv0989c | grec2 | heptaprenyl diphosphate |
| Rv2964 | pur $\cup$ | formyltetrahydrofolate deformy- | Rv1005c | pabB | $p$-aminobenzoate synthase |  |  | synthase II |
|  |  | lase | Rv0812 | $p a b C$ | aminodeoxychorismate lyase | Rv3398c | $i d s A$ | geranylgeranyl pyrophosphate synthase |
| 2. Pyrimid | ne ribon | leotide biosynthesis | 3. Lipoate |  |  | Rv2173 | idsA2 | geranylgeranyl pyrophosphate |
| Rv1383 | carA | carbamoyl-phosphate synthase | Rv2218 | $\operatorname{lip} A$ | lipoate biosynthesis protein A |  |  | synthase |
|  |  | subunit | Rv2217 | lipB | lipoate biosynthesis protein $B$ | Rv3383c | idsB | transfergeranyl, similar geranyl |
| Rv1384 | carB | carbamoyl-phosphate synthase |  |  |  |  |  | pyrophosphate synthase |
|  |  | subunit | 4. Molybd | pterin |  | Rv0534c | menA | 4-dihydroxy-2-naphthoate |
| Rv1380 | pyrB | aspartate carbamoyltransferase | Rv3109 | moaA | molybdenum cofactor biosynthe- |  |  | octaprenyltransferase |
| Rv1381 | pyrc | dihydroorotase |  |  | sis, protein A | Rv0548c | menB | naphthoate synthase |
| Rv2139 | pyrD | dihydroorotate dehydrogenase | Rv0869c | moaA2 | molybdenum cofactor biosynthe- | Rv0553 | menc | o-succinylbenzoate-CoA synthase |
| Rv1385 | pyrF | orotidine $5^{\prime}$-phosphate decarboxylase | Rv0438c | тоаАз | sis, protein A molybdenum cofactor biosynthe- | Rv0555 | menD | 2-succinyl-6-hydroxy-2,4-cyclo-hexadiene-1-carboxylate synthase |
| Rv1699 | pyrG | CTP synthase |  |  | sis, protein A | Rv0542c | men $E$ | o-succinylbenzoic acid-CoA ligase |
| Rv2883c | pyrH | uridylate kinase | Rv3110 | moab | molybdenum cofactor biosynthe- | Rv3853 | men $G$ | $S$-adenosylmethionine: |
| Rv0382c | umpA | probable uridine $5^{\prime}$-monophos- |  |  | sis, protein B |  |  | 2-demethylmenaquinone |
|  |  |  | Rv0984 | moab2 | molybdenum cofactor biosynthesis, protein B | Rv3397c Rv0693 | phyA pqqE | phytoene synthase coenzyme PQQ synthesis |
| 3. 2'-deox | ribonuc | tide metabolism | Rv3111 | moac | molybdenum cofactor biosynthe- |  |  | protein E |
| Rv0321 | dcd | deoxycytidine triphosphate deaminase | Rv0864 | moaC2 | sis, protein C molybdenum cofactor biosynthe- | Rv0558 | ubie | ubiquinone/menaquinone biosynthesis methyltransferase |
| Rv2697c | dut | deoxyuridine triphosphatase |  |  | sis, protein C |  |  |  |
| Rv0233 | $n \mathrm{rdB}$ | ribonucleoside-diphosphate | Rv3324c | moaC3 | molybdenum cofactor biosynthe- | 12. Hem | and porp | yrin |
|  |  | reductase B2 (eukaryotic-like) |  |  | sis, protein C | Rv0509 | hemA | glutamyl-tRNA reductase |
| Rv3051c | nrde | onucleoside diphosphate | Rv3112 | moad | olybdopterin converting factor | Rv0512 | hemb | $\delta$-aminolevulinic acid dehydratase |
|  |  | reductase $\alpha$ chain |  |  | subunit 1 | Rv0510 | hemC | porphobilinogen deaminase |
| Rv1981c | nrdF | ribonucleotide reductase small | Rv0868c | moaD2 | molybdopterin converting factor | Rv2678c | heme | uroporphyrinogen decarboxylase |


| 300 | hemk | phyr |
| :---: | :---: | :---: |
| Rv0524 | hemL | glutamate-1-semialdehyde aminotransferase |
| Rv2388c | hemN | oxygen-independent coproporphyrinogen III oxidase |
| Rv2677c | hem ${ }^{\prime}$ | protoporphyrinogen oxidase |
| Rv1485 | hemZ | ferrochelatase |
| 13. Cobalamin |  |  |
| Rv2849c | coba | cob(1)alamin |
| Rv2848c | cobB | cobyrinic acid a, c-diamide |
| v2231c | cobc | aminotransferase |
| Rv2236c | cobD | cobinamide synthase |
| Rv2064 | cobs | percorrin reductase |
| Rv2065 | cobH | precorrin isomerase |
| Rv2066 | cobl | Cobl-CobJ fusion protein |
| Rv2070c | cobk | precorrin reduc |
| Rv2072c | cobl | probable methyltransfera |
| v2071c | cobM | precorrin-3 methylase |
| Rv2062c | cobN | cobalt insertion |
| Rv2208 | cobs | cobalamin ( 5 '-phosphate) synthase |
| Rv2207 | cobT | nicotinate-nucleotide-dimethylbenzimidazole transferase |
| Rv0254c | cobU | cobinamide kinase |
| 0255c | $\operatorname{cob} Q$ | cobyric acid synthase |
| Rv3713 | cobQ2 | possible cobyric acid s |
| Rv0306 |  | similar to BluB cobalamin synthesis protein R. capsulatus |
| 14. Iron utilization |  |  |
| Rv1876 | bfrA | bacteriof |
| 13841 | bfrB | eriofer |
| v3215 | entc | probable isochorismate synthase |
| Rv3214 | entD | weak similarity to many phosphoglycerate mutases |
| Rv2895c | viub | similar to proteins involved in vibriobactin uptake |
| Rv3525c |  | similar to ferripyochelin binding protein |
| H. Lipid biosynthesis |  |  |
| 1. Synthesis of fatty and mycolic acids |  |  |
| Rv3285 | ассАЗ | acety/propionyl CoA carboxylase |
| Rv0904c | accD3 | acety/propionyl CoA carboxylase $\beta$ subunit |
| Rv3799c | accD4 | acetyl/propionyl CoA carboxylase |
| Rv3280 | ac |  |
|  |  | $\beta$ subunit |
| Rv2247 | accD6 | acety/propionyl CoA carboxylase $\beta$ subunit |
| Rv2244 | acpM | acyl carrier protein (meromycolate extension) |
| Rv2523c | $a c p S$ | CoA: apo-[ACP] pantethienephosphotransferase |
| Rv2243 | fabD | malonyl CoA-[ACP] transacylase |
| Rv0649 | fabD2 | malonyl CoA-[ACP] transacylase |
| Rv1483 | fabG1 | 3 -oxoacyl-[ACP] reductase (aka MabA) |
| Rv1350 | fabG2 | 3-oxoacyl-[ACP] Reductase |
| Rv2002 | fabG3 | 3-oxoacyl-[ACP] reductase |
| Rv0242c | fabG4 | 3 -oxoacyl-[ACP] reductase |
| Rv2766c | fabG5 | 3 -oxoacyl-[ACP] reductase |
| Rv0533c | fabH | $\beta$-ketoacyl-ACP synthase III |
| Rv2524c | fas | fatty acid synthase |
| Rv1484 | inha | enoyl-[ACP] reductase |
| Rv2245 | kasA | $\beta$-ketoacyl-ACP synthase (meromycolate extension) |
| Rv2246 | kasB | $\beta$-ketoacyl-ACP synthase (meromycolate extension) |
| Rv1618 | tesB1 | thioesterase II |
| Rv2605c | tesB2 | thioesterase II |
| Rv0033 |  | possible acyl carrier protein |
| Rv1344 |  | possible acyl carrier protein |
| Rv1722 |  | possible biotin carboxylase |
| Rv3221c |  | resembles biotin carboxyl carrier |
| Rv3472 |  | possible acyl carrier protein |
| 2. Modification of fatty and mycolic |  |  |
| Rv3391 | acrA1 | fatty acyl-CoA reductase |
| Rv3392c | cmas 1 | cyclopropane mycolic acid synthase 1 |
| Rv0503c | cmaA2 | cyclopropane mycolic acid synthase 2 |
| Rv0824c | desat | acyl-[ACP] desaturase |
| Rv1094 | desA2 | acyl-[ACP] desaturase |
| Rv3229c | desA3 | acyl-[ACP] desaturase |
| Rv0645c | mmaA 1 | methoxymycolic acid synthase 1 |
| Rv0644c | mmaA2 | methoxymycolic acid synthase 2 |
| Rvo643c | mmaA3 | methoxymycolic acid synthase 3 |
| Rv0642c | mmaA4 | methoxymycolic acid synthase 4 |
| Rv0447c | $u f a A 1$ | unknown fatty acid methyltransferase |
| Rv3538 | ufaA2 | unknown fatty acid methyltransferase |
| Rv0469 | umaA1 | unknown mycolic acid methyltransferase |
| Rv0470c | umaA2 | unknown mycolic acid methyl- |



| Rv0823c | - | family) transcriptional regulator (NifR3/Smm1 family) | Rv3160c |  | putative transcriptional regulator | Rv0018c | $p p p$ | truncated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Rv3167c |  | putative transcriptional regulator |  |  |  |
|  |  |  | Rv3173c | - | transcriptional regulator (TetR/AcrR family) |  |  |  |
| Rv0827c | - | transcriptional regulator (ArsR family) | Rv3183 | - |  | Rv2234 | $p$ tpA | low molecular weight protein-tyro-sine-phosphatase |
| Rv0890c | - | transcriptional regulator (LuxR/UhpA family) | Rv3208 | - | transcriptional regulator (TetR/AcrR family) | Rv0153c | - | putative protein-tyrosine-phosphatase |
| Rv0891c | - | putative transcriptional regulator | Rv3249c | - | transcriptional regulator |  |  |  |
| Rv0894 |  | putative transcriptional regulator |  |  | (TetR/AcrR family) | II. Macromolecule metabolism |  |  |
| Rv1019 | - | transcriptional regulator (TetR/AcrR family) | Rv3291c | - | transcriptional regulator (Lrp/AsnC family) | A. Synthesis and modification of macromolecules <br> 1. Ribosomal protein synthesis and modification |  |  |
| Rv1049 | - | transcriptional regulator (MarR family) | Rv3295 | - | transcriptional regulator (TetR/AcrR family) | Rv3420c | riml | ribosomal protein S18 acetyl transferase |
| Rv1129c |  | transcriptional regulator (PbsX/Xre family) | Rv3334 | - | transcriptional regulator (MerR family) | Rv0995 Rv0641 | $\begin{aligned} & \operatorname{rimJ} \\ & \operatorname{rpIA} \end{aligned}$ | acetylation of 30 S 55 subunit 50 ribosomal protein L1 |
| Rv1151c | - | putative transcriptional regulator | Rv3405c | - | putative transcriptional regulator | Rv0704 | $r p / B$ | $50 S$ ribosomal protein L2 |
| Rv1152 | - | transcriptional regulator (GntR | Rv3522 Rv3557c | - | putative transcriptional regulator | Rv0701 | rplC | 50 S ribosomal protein L3 |
|  |  | family) |  |  | transcriptional regulator | Rv0702 | $r p / D$ | $50 S$ ribosomal protein L4 |
| Rv1167c | - | putative transcriptional regulator |  |  | (TetR/AcrR family) | Rv0716 | rple | $50 S$ ribosomal protein L5 |
| Rv1219c | - | putative transcriptional regulator | Rv3574 | - | transcriptional regulator | Rv0719 | rplf | 505 ribosomal protein L6 |
| Rv1255c | - | transcriptional regulator (TetR/AcrR family) putative transcriptional regulator | Rv3575c |  | (TetR/AcrR family)transcriptional regu | Rvo056 | rp/I | 50 S ribosomal protein L9 |
|  |  |  |  | - |  | Rv0651 | rpl | 50 S ribosomal protein L10 |
| Rv1332 |  |  |  |  | family) | Rv0640 | rplk | 50 S ribosomal protein L11 |
| Rv1353c | - | transcriptional regulator | $\begin{aligned} & \text { Rv3583c } \\ & \text { Rv3676 } \end{aligned}$ | - | putative transcriptional regulator | Rv0652 | rpll | 50 S ribosomal protein L7/L12 |
|  |  | (TetR/AcrR family) |  | - | transcriptional regulator (Crp/Fnr | Rv3443c | rpIM | 50 S ribosomal protein L13 |
| Rv1358 | - | transcriptional regulator | Rv3678c | - | family) | Rv0714 | $r p / N$ | 50 S ribosomal protein L14 |
|  |  | (LuxR/UhpA family) |  |  | transcriptional regulator (LysR | Rv0723 | rplo | 50 S ribosomal protein L15 |
| Rv1359 |  | putative transcriptional regulator |  |  | family) | Rv0708 | rplp | 50 S ribosomal protein L16 |
| Rv1395 | - | transcriptional regulator (AraC/XyIS family) | Rv3736 | - | (AraC/XyIS family) transcriptional regulator (ArsR family) | Rv3456c Rv0720 | $\begin{aligned} & r p / Q \\ & r p / R \end{aligned}$ | 50 s ribosomal protein L17 50 ribosomal protein L18 |
| Rv1404 | - | transcriptional regulator (MarR family) | Rv3744 | - |  | Rv2904c Rv1643 | $\begin{aligned} & \text { rplS } \\ & \text { rpiT } \end{aligned}$ | 50 s ribosomal protein L19 50 ribosomal protein L20 |
| Rv1423 |  | putative transcriptional regulator | Rv3830c | - | transcriptional regulator | Rv2442c | rplu | 50 S ribosomal protein L21 |
| Rv1460 | - | putative transcriptional regulator |  |  | (TetR/AcrR family) | Rv0706 | $r p / V$ | 50 S ribosomal protein L22 |
| Rv1474c | - | transcriptional regulator (TetR/AcrR family) | Rv3833 | - | transcriptional regulator (AraC/XyIS family) | Rv0703 <br> Rv0715 | rpiW <br> rolX | 50 S ribosomal protein L23 50 S ribosomal protein 124 |
| Rv1534 | - | transcriptional regulator | Rv3840 | - | putative transcriptional regulator | Rv1015c | $r p / Y$ | 50 S ribosomal protein L25 |
|  |  | (TetR/AcrR family) | Rv3855 | - | putative transcriptional regulator | Rv2441c | rpmA | $50 S$ ribosomal protein L27 |
| Rv1556 | - | putative transcriptional regulator |  |  |  | Rvo105c | rpmB | $50 \mathrm{~S} \mathrm{ribosomal} \mathrm{protein} \mathrm{L28}$ |
| Rv1674c | - | putative transcriptional regulator | 2. Two component systems |  |  | Rv2058c | rpmB2 | 50 S ribosomal protein L28 |
| Rv1675c | - | putative transcriptional regulator | Rv1028c | kdipD | sensor histidine kinase | Rv0709 | rpmC | 50 S ribosomal protein L29 |
| Rv1719 | - | transcriptional regulator (IcIR | Rvi027c | kdipE | two-component response | Rv0722 | rpmD | 50 S ribosomal protein L30 |
|  |  | family) |  |  | regulator | Rv1298 | rpmE | 50 S ribosomal protein L31 |
| Rv1773c | - | transcriptional regulator (IcIR family) | Rv3246c | $m t r A$ | two-component response regulator | $\begin{aligned} & \text { Rv2057c } \\ & \text { Rv3924c } \end{aligned}$ | $\begin{aligned} & \operatorname{rpmG} \\ & \operatorname{rpmH} \end{aligned}$ | 50 S ribosomal protein L33 50 S ribosomal protein L34 |
| Rv1776c | - | putative transcriptional regulator | Rv3245c | $m t r B$ | sensor histidine kinase | Rv1642 | rpml | 50 S ribosomal protein L35 |
| Rv1816 | - | putative transcriptional regulator | Rv0844c | narL | two-component response | Rv34610 | rpmJ | 50 S ribosomal protein L36 |
| Rv1846c | - | putative transcriptional regulator |  |  | regulator | Rv1630 | rpsA | 30 S ribosomal protein S1 |
| Rv1931c | - | transcriptional regulator (AraC/XyIS family) | Rv0757 | phop | two-component response regulator | Rv2890c Rv0707 | rpsB $\operatorname{rps} C$ | 30 ribosomal protein S2 30 ribosomal protein S3 |
| Rv1956 | - | putative transcriptional regulator | Rv0758 | phor | sensor histidine kinase | Rv3458c | $r p s D$ | 305 ribosomal protein ${ }^{\text {S }} 4$ |
| Rv1963c | - | putative transcriptional regulator | Rv0491 | regX3 | two-component response | Rv0721 | rpsE | 305 ribosomal protein 55 |
| Rv1985c | - | transcriptional regulator (LysR |  |  | regulator | Rv0053 | rpsF | 305 ribosomal protein S6 |
|  |  | family) | Rv0490 | $\operatorname{sen}$ X3 | sensor histidine kinase | Rv0683 | $r p s G$ | 305 ribosomal protein S7 |
| Rv1990c |  | putative transcriptional regulator | Rv0602c | terA | two-component response | Rv0718 | rpsH | 30 S ribosomal protein $\mathrm{S8}$ |
| Rv1994c | - | transcriptional regulator (MerR |  |  | regulator | Rv3442c | rps 1 | $30 \mathrm{Sribosomal} \mathrm{protein} \mathrm{S9}$ |
|  |  | family) | Rvo260c | - | two-component response | Rv0700 | rps J | 30 S ribosomal protein S10 |
| Rv2017 | - | putative transcriptional regulator |  |  | regulator | Rv3459c | rpsk | 30 S ribosomal protein S11 |
|  |  | (PbsX/Xre family) | Rv0600c | - | sensor histidine kinase | Rv0682 | $r p s L$ | 30 S ribosomal protein S12 |
| Rv2021c |  | putative transcriptional regulator | Rv0601c | - | sensor histidine kinase | Rv3460c | rps $M$ | 30 S ribosomal protein S13 |
| Rv2034 |  | transcriptional regulator (ArsR | Rv0818 | - | two-component response | Rv0717 | rps N | 30 S ribosomal protein S14 |
|  |  | family) |  |  | regulator | Rv2056c | rpsN2 | 30 S ribosomal protein S14 |
| Rv2175c |  | putative transcriptional regulator | Rv0845 | - | sensor histidine kinase | Rv2785c | rpso | 30 S ribosomal protein S15 |
| Rv2250c |  | putative transcriptional regulator | Rv0902c |  | sensor histidine kinase | Rv2909c | rpsP | 30 S ribosomal protein S16 |
| Rv2258c |  | putative transcriptional regulator | Rv0903c |  | two-component response | Rv0710 | $r p s Q$ | $30 \mathrm{Sribosomal} \mathrm{protein} \mathrm{S17}$ |
| Rv2282c | - | transcriptional regulator (LysR |  |  | regulator | Rvo055 | $r p s$ R | 30 r ribosomal protein S18 |
|  |  | family) | Rv0981 | - | two-component response | Rv2055c | rpsR2 | 30 r ribosomal protein S18 |
| Rv2308 |  | putative transcriptional regulator |  |  | regulator | Rv0705 | rpsS | 30 S ribosomal protein S19 |
| Rv2324 | - | transcriptional regulator | Rv0982 |  | sensor histidine kinase | Rv2412 | $r p s T$ | $30 \mathrm{Sribosomal} \mathrm{protein} \mathrm{S20}$ |
|  |  | (Lrp/AsnC family) | Rv1032c | - | sensor histidine kinase | Rv32410 | - | member of S30AE ribosomal |
| Rv2358 | - | transcriptional regulator (ArsR family) | Rv1033c | - | two-component response regulator |  |  | protein family |
| Rv2488c | - | transcriptional regulator | Rv1626 | - | two-component response | 2. Ribosom | me modifi | ation and maturation |
|  |  | (LuxR/UhpA family) |  |  | regulator | Rv1010 | ksgA | 16 S rRNA dimethyltransferase |
| Rv2506 | - | transcriptional regulator | Rv2027c | - | sensor histidine kinase | Rv2838c | rbfA | ribosome-binding factor A |
|  |  | (TetR/AcrR family) | Rv2884 | - | two-component response | Rv2907c | rimM | $16 S$ rRNA processing protein |
| Rv262 10 |  | putative transcriptional regulator |  |  | regulator |  |  |  |
| Rv2640c | - | transcriptional regulator (ArsR | Rv3132c | - | sensor histidine kinase | 3. Aminoacyl tRNA synthases and their modification |  |  |
|  |  | family) | Rv3133c | - | two-component response | Rv2555c | alas | alanyl-tRNA synthase |
| Rv2642 | - | transcriptional regulator (ArsR |  |  | regulator | Rv1292 | args | arginyl-tRNA synthase |
|  |  | family) | Rv3143 | - | putative sensory transduction | Rv2572c | aspS | aspartyl-tRNA synthase |
| Rv2669 | - | putative transcriptional regulator |  |  | protein | Rv3580c | cyss | cysteinyl-tRNA synthase |
| Rv2745c | - | putative transcriptional regulator | Rv3220c |  | sensor histidine kinase | Rv2130c | cysS2 | cysteinyl-tRNA synthase |
| Rv2779c | - | transcriptional regulator | Rv3764c | - | sensor histidine kinase | Rv1406 | fmt | methionyl-tRNA formyltransferase |
|  |  | (Lrp/AsnC family) | Rv3765c | - | two-component response | Rv3011c | gatA | glu-tRNA-gln amidotransterase, |
| Rv2887 | - | transcriptional regulator (MarR family) |  |  | regulator | Rv3009c | gatB | subunit $B$ glu-tRNA-gln amidotransferase, |
| Rv2912c | - | transcriptional regulator | 3. Serine-threonine protein kinases and phosphoprotein |  |  | Rv3012c | gatc | subunit A |
| Rv2989 | - | transcriptional regulator (ICIR | Rvool5c | $p k n A$ | serine-threonine protein kinase |  |  | subunit C |
|  |  | family) | Rv0014c | $p k n B$ | serine-threonine protein kinase | Rv2992c | gits | glutamyl-tRNA synthase |
| Rv3050c | - | putative transcriptional regulator | Rv0931c | $p k n D$ | serine-threonine protein kinase | Rv2357c | glys | glycyl-tRNA synthase |
| Rv3055 | - | putative transcriptional regulator | Rv1743 | $p k n E$ | serine-threonine protein kinase | Rv2580c | hiss | histidyl-tRNA synthase |
| Rv3058c | - | putative transcriptional regulator | Rv1746 | $p k n F$ | serine-threonine protein kinase | Rv1536 | iles | isoleucyl-tRNA synthase |
| Rv3060c | - | transcriptional regulator (GntR | Rv0410c | $p k n G$ | serine-threonine protein kinase | Rv0041 | leus | leucyl-tRNA synthase |
|  |  | family) | Rv1266c | pknH | serine-threonine protein kinase | Rv3598c | lyss | lysyl-tRNA synthase |
| Rv3066 <br> Rv3095 <br> Rv3124 |  | putative transcriptional regulator | Rv2914c | $p k n /$ | serine-threonine protein kinase | Rv1640c | lys $X$ | C-term lysyl-tRNA synthase |
|  |  | putative transcriptional regulator | Rv2088 | pknJ | serine-threonine protein kinase | Rv1007c | mets | methionyl-tRNA synthase |
|  |  | transcriptional regulator (AfsR/Dndl/RedD family) | Rv3080c Rv2176 | pknK <br> pknL | serine-threonine protein kinase serine-threonine protein kinase, | Rv1649 | phes | phenylalanyl-tRNA synthase $\alpha$ subunit |


| Rv1650 | pheT | phenylalanyl-tRNA synthase $\beta$ subunit |
| :---: | :---: | :---: |
| Rv2845c | pros | prolyl-tRNA synthase |
| Rv3834c | serS | seryl-tRNA synthase |
| Rv2614c | thrs | threonyl-tRNA synthase |
| Rv2906c | trmD | tRNA (guanine-N1)-methyltransferase |
| Rv3336c | $t r p s$ | tryptophanyl tRNA synthase |
| Rv1689 | tyrs | tyrosyl-tRNA synthase |
| Rv2448c | vals | valyl-tRNA synthase |
| 4. Nucleoproteins |  |  |
| Rv1407 | fmu | similar to Fmu protein |
| Rv3852 | hns | HU-histone protein |
| Rv2986c | hupB | DNA-binding protein II |
| Rv1388 | miHF | integration host factor |
| 5. DNA replication, repair, recombination and restriction/modification |  |  |
| Rv1317c | alkA | DNA-3-methyladenine glycosidase II |
| Rv2836c | dinF | DNA-damage-inducible protein $F$ |
| Rv1329c | $\operatorname{din} G$ | probable ATP-dependent helicase |
| Rv3056 | dinP | DNA-damage-inducible protein |
| Rv1537 | $\operatorname{din} X$ | probable DNA-damage-inducible protein |
| Rv0001 | dnaA | chromosomal replication initiator protein |
| Rv0058 | dnaB | DNA helicase (contains intein) |
| Rv1547 | dnaE1 | DNA polymerase III, $\alpha$ subunit |
| Rv3370c | dnaE2 | DNA polymerase III $\alpha$ chain |
| Rv2343c | dnaG | DNA primase |
| Rv0002 | dnaN | DNA polymerase III, $\beta$ subunit |
| Rv3711c | dnaQ | DNA polymerase III $\epsilon$ chain |
| Rv3721c | dnaZX | DNA polymerase III, $\gamma$ (dnaZ) and $\tau(\mathrm{dnaX})$ |
| Rv2924c | fpg | formamidopyrimidine-DNA glycosylase |
| Rv0006 | gyrA | DNA gyrase subunit A |
| Rv0005 | gyrB | DNA gyrase subunit B |
| Rv2092c | helY | probable helicase, Ski2 subfamily |
| Rv2101 | helZ | probable helicase, Snf2/Rad54 family |
| Rv2756c | hsdM | type I restriction/modification system DNA methylase |
| Rv2755c | hsdS' | type I restriction/modification system specificity determinant |
| Rv3296 | ihr | ATP-dependent helicase |
| Rv3014c | liga | DNA ligase |
| Rv3062 | lig ${ }^{\text {l }}$ | DNA ligase |
| Rv3731 | ligC | probable DNA ligase |
| Rv1020 | mfd | transcription-repair coupling factor |
| Rv2528c | mrr | restriction system protein |
| Rv2985 | mut 1 | Mut homologue |
| Rv1160 | mutT2 | Mut homologue |
| Rv0413 | mutT3 | Mut homologue |
| Rv3589 | mutY | probable DNA glycosylase |
| Rv3297 | nei | probable endonuclease VIII |
| Rv3674c | $n$th | probable endonuclease III |
| Rv1316c | ogt | methylated-DNA-protein-cysteine methyltransferase |
| Rv1629 | polA | DNA polymerase I |
| Rv1402 | priA | putative primosomal protein $\mathrm{n}^{\prime}$ (replication factor Y) |
| Rv3585 | radA | probable DNA repair RadA homologue |
| Rv2737c | reca | recombinase (contains intein) |
| Rv0630c | rec $B$ | exodeoxyribonuclease V |
| Rv0631c | recC | exodeoxyribonuclease V |
| Rv0629c | recD | exodeoxyribonuclease V |
| Rv0003 | recF | DNA replication and SOS induction |
| Rv2973c | rec $G$ | ATP-dependent DNA helicase |
| Rv1696 | recN | recombination and DNA repair |
| Rv3715c | rech | RecBC-Independent process of DNA repair |
| Rv2736c | recX | regulatory protein for RecA |
| Rv2593c | ruva | Holliday junction binding protein, DNA helicase |
| Rv2592c | ruvB | Holliday junction binding protein |
| Rv2594c | ruvC | Holliday junction resolvase, endodeoxyribonuclease |
| Rv0054 | ssb | single strand binding protein |
| Rv1210 | $\operatorname{tag} A$ | DNA-3-methyladenine glycosidasel |
| Rv3646c | topA | DNA topoisomerase |
| Rv2976c | ung | uracil-DNA glycosylase |
| Rv1638 | uvrA | excinuclease $A B C$ subunit $A$ |
| Rv1633 | uvrB | excinuclease $A B C$ subunit $B$ |
| Rv1420 | uvrc | excinuclease $A B C$ subunit $C$ |
| Rvo949 | uvrD | DNA-dependent ATPase I and helicase II |
| Rv3198c | uvrD2 | putative UvrD |
| Rv0427c | xthA | exodeoxyribonuclease III |
| Rv0071 |  | group II intron maturase |
| Rv0861c |  | probable DNA helicase |
| Rv0944 | - | possible formamidopyrimidineDNA glycosylase |
| Rv1688 | - | probable 3-methylpurine DNA glycosylase |


| Rv2090 |  | partially similar to DNA polymerase I |
| :---: | :---: | :---: |
| Rv2191 |  | similar to both PolC and UvrC proteins |
| Rv2464c | - | probable DNA glycosylase, endonuclease VIII |
| Rv3201c |  | probable ATP-dependent DNA helicase |
| Rv3202c |  | similar to UvrD proteins |
| Rv3263 | - | probable DNA methylase |
| Rv3644c | - | similar in N -term to DNA polymerase III |
| 6. Protein translation and modification |  |  |
| Rv0429c | def | polypeptide deformylase |
| Rv2534c | efp | elongation factor $P$ |
| Rv2882c | frr | ribosome recycling factor |
| Rv0684 | fusA | elongation factor $G$ |
| Rvo120c | fusA2 | elongation factor G |
| Rv1080c | greA | transcription elongation factor G |
| Rv3462c | infA | initiation factor IF-1 |
| Rv2839c | infB | initiation factor IF-2 |
| Rv1641 | infC | initiation factor IF-3 |
| Rv0009 | ppia | peptidyl-prolyl cis-trans isomerase |
| Rv2582 | ppiB | peptidyl-prolyl cis-trans isomerase |
| Rv1299 | prfa | peptide chain release factor 1 |
| Rv3105c | $p r f B$ | peptide chain release factor 2 |
| Rv2889c | tsf | elongation factor EF-Ts |
| Rv0685 | tuf | elongation factor EF-Tu |
| 7. RNA synthesis, RNA modification and DNA transcription |  |  |
| Rv1253 | deaD | ATP-dependent DNA/RNA helicase |
| Rv2783c | gps! | pppGpp synthase and polyribonucleotide phosphorylase |
| Rv2841c | nusa | transcription termination factor |
| Rv2533c | nus ${ }^{\text {a }}$ | N -utilization substance protein B |
| Rv0639 | nus $G$ | transcription antitermination protein |
| Rv3907c | pena | polynucleotide polymerase |
| Rv3232c | pvdS | alternative sigma factor for siderophore production |
| Rv3211 | rhiE | probable ATP-dependent RNA helicase |
| Rv1297 | tho | transcription termination factor rho |
| Rv3457c | rpoA | $\alpha$ subunit of RNA polymerase |
| Rv0667 | rpob | $\beta$ subunit of RNA polymerase |
| Rv0668 | rpoc | $\beta$ ' subunit of RNA polymerase |
| Rv1364c | $r s b U$ | SigB regulation protein |
| Rv3287c | rsbW | anti-sigma B factor |
| Rv2703 | sigA | RNA polymerase sigma factor (aka MysA, RpoV) |
| Rv2710 | sig $B$ | RNA polymerase sigma factor (aka MysB) |
| Rv2069 | sigC | ECF subfamily sigma subunit |
| Rv3414c | sig D | ECF subfamily sigma subunit |
| Rv1221 | sigE | ECF subfamily sigma subunit |
| Rv3286c | sigF | ECF subfamily sigma subunit |
| Rv0182c | sigG | sigma-70 factors ECF subfamily |
| Rv3223c | sigh | ECF subfamily sigma subunit |
| Rv1189 | sigl | ECF family sigma factor |
| Rv3328c | sigJ | similar to Sigl, ECF family |
| Rv0445c | sigk | ECF-type sigma factor |
| Rv0735 | sigl | sigma-70 factors ECF subfamily |
| Rv3911 | sigM | probable sigma factor, similar to SigE |
| Rv3366 | spou | probable rRNA methylase |
| Rv3455c | truA | probable pseudouridylate synthase |
| Rv2793c | truB | tRNA pseudouridine 55 synthase |
| Rv1644 | $t s n R$ | putative 23 S rRNA methyltransferase |
| Rv3649 | - | ATP-dependent DNA/RNA helicase |
| 8. Polysaccharides (cytoplasmic) |  |  |
| Rv1326c | glgB | 1,4- $\alpha$-glucan branching enzyme |
| Rv1328 | $g 1 g P$ | probable glycogen phosphorylase |
| Rv1564c | $g \lg X$ | probable glycogen debranching enzyme |
| Rv1563c | $g / g Y$ | putative $\alpha$-amylase |
| Rv1562c | glgZ | maltooligosyltrehalose trehalohydrolase |
| Rv0126 | - | probable glycosyl hydrolase |
| Rv1781c | - | probable 4- $\alpha$-glucanotransferase |
| Rv2471 | - | probable maltase $\alpha$-glucosidase |
| B. Degradation of macromolecules |  |  |
| 1. RNA |  |  |
| Rv1014c | pth | peptidyl-tRNA hydrolase |
| Rv2925c | mc | RNAse III |
| Rv2444c | rne | similar at C-term to ribonuclease E |
| Rv2902c | mhnB | ribonuclease HII |
| Rv3923c | mpA | ribonuclease P protein component |
| Rv1340 | $r p h A$ | ribonuclease PH |


| 2. DNA |  |  |
| :---: | :---: | :---: |
| Rv0670 | end | endonuclease IV (apurinase) |
| Rv1108c | $x s e A$ | exonuclease VII large subunit |
| Rvi107c | $x s \in B$ | exonuclease VII small subunit |
| 3. Proteins, peptides and glycopeptides |  |  |
| Rv3305c | amiA | probable aminohydrolase |
| Rv3306c | amiB | probable aminohydrolase |
| Rv3596c | clp $C$ | ATP-dependent Clp protease |
| Rv2461c | clpp | ATP-dependent Clp protease proteolytic subunit |
| Rv2460c | clpP2 | ATP-dependent Clp protease proteolytic subunit |
| Rv2457c | clpX | ATP-dependent Clp protease ATP-binding subunit ClpX |
| Rv2667 | clpX ${ }^{\prime}$ | similar to ClpC from M. leprae but shorter |
| Rv34 190 | $g c p$ | glycoprotease |
| Rv2725c | hfiX | GTP-binding protein |
| Rv1223 | htrA | serine protease |
| Rv2861c | mapa1 | methionine aminopeptidase |
| Rv0734 | тарA2 | probable methionine aminopeptidase |
| Rv0319 | $p c p$ | pyrrolidone-carboxylate peptidase |
| Rvo125 | рерA | probable serine protease |
| Rv2213 | рер $B$ | aminopeptidase A/l |
| Rv0800 | рерС | aminopeptidase I |
| Rv2467 | pepD | probable aminopeptidase |
| Rv2089c | pepE | cytoplasmic peptidase |
| Rv2535c | $p e p Q$ | cytoplasmic peptidase |
| Rv2782c | pepR | protease/peptidase, M16 family (insulinase) |
| Rv2109c | prca | proteasome $\alpha$-type subunit 1 |
| Rv2110c | prcB | proteasome $\beta$-type subunit 2 |
| Rv0782 | ptrBa | protease II, $\alpha$ subunit |
| Rv0781 | ptrBb | protease II, $\beta$ subunit |
| Rv0724 | sppA | protease IV, signal peptide peptidase |
| Rv0198c | - | probable zinc metalloprotease |
| Rv0457c |  | probable peptidase |
| Rv0840c | - | probable proline iminopeptidase |
| Rv0983 | - | probable serine protease |
| Rv1977 | - | probable zinc metallopeptidase |
| Rv3668c | - | probable alkaline serine protease |
| Rv3671c | - | probable serine protease |
| Rv3883c | - | probable secreted protease |
| Rv3886c | - | protease |
| 4. Polysaccharides, lipopolysaccharides and phospholipids |  |  |
| Rv0062 | celA | cellulase/endoglucanase |
| Rv3915 | cwiM | hydrolase |
| Rv0315 | - | probable $\beta$-1,3-glucanase |
| Rv1090 | - | probable inactivated cellulase/endoglucanase |
| Rv1327c | - | probable glycosyl hydrolase, $\alpha$ amylase family |
| Rv1333 |  | probable hydrolase |
| Rv3463 | - | probable neuraminidase |
| Rv3717 | - | possible N -acetylmuramoyl-L-alanine amidase |
| 5. Esterases and lipases |  |  |
| Rv0220 | lipC | probable esterase |
| Rv1923 | lip $D$ | probable esterase |
| Rv3775 | lipE | probable hydrolase |
| Rv3487c | lipF | probable esterase |
| Rv0646c | lipg | probable hydrolase |
| Rvi399c | liph | probable lipase |
| Rvi400c | lipl | probable lipase |
| Rv1900c | lipJ | probable esterase |
| Rv2385 | lipk | probable acetyl-hydrolase |
| Rv1497 | lipL | esterase |
| Rv2284 | lipM | probable esterase |
| Rv2970c | lip N | probable lipase/esterase |
| Rv1426c | lipo | probable esterase |
| Rv2463 | lipp | probable esterase |
| Rv2485c | $\operatorname{lip} Q$ | probable carboxlyesterase |
| Rv3084 | liph | probable acetyl-hydrolase |
| Rv3176c | lipS | probable esterase/lipase |
| Rv2045c | lipT | probable carboxylesterase |
| Rv1076 | lipu | probable esterase |
| Rv3203 | lipV | probable lipase |
| Rv0217c | lipW | probable esterase |
| Rv2351c | pica | phospholipase C precursor |
| Rv2350c | picB | phospholipase C precursor |
| Rv2349c | plcC | phospholipase C precursor |
| Rv1755c | plcD | partial CDS for phospholipase C |
| Rv1104 | - | probable esterase pseudogene |
| Rv1105 | - | probable esterase pseudogene |
| 6. Aromatic hydrocarbons |  |  |
| Rv3469c | $m h p E$ | probable 4-hydroxy-2-oxovalerate aldolase |
| Rv0316 | - | probable muconolactone isomerase |
| Rv0771 | - | probable 4-carboxymuconolactone decarboxylase |
| Rv0939 | - | probable dehydrase |
| Rv1723 | - | 6 -aminohexanoate-dimer hydro- |


|  |  | lase |
| :---: | :---: | :---: |
| Rv2715 |  | 2-hydroxymuconic semialdehyde hydrolase |
| Rv3530c |  | probable cis-diol dehydrogenase |
| Rv3534c |  | 4-hydroxy-2-oxovalerate aldolase |
| Rv3536c | - | aromatic hydrocarbon degradation |
| C. Cell envelope |  |  |
| 1. Lipoproteins (fppA-/pro) 65 |  |  |
| 2. Surface polysaccharides, lipopolysaccharides, proteins and antigens |  |  |
| Rv0806c | cps $Y$ | probable UDP-glucose-4epimerase |
| Rv3811 | csp | secreted protein |
| Rv1677 | dsbF | highly similar to C-term Mpt53 |
| Rv3794 | embA | involved in arabinogalactan synthesis |
| Rv3795 | embB | involved in arabinogalactan synthesis |
| Rv3793 | embc | involved in arabinogalactan synthesis |
| Rv3875 | esat6 | early secretory antigen target |
| Rv0112 | gca | probable GDP-mannose dehydratase |
| Rv0113 | $g m h A$ | phosphoheptose isomerase |
| Rv2965c | kdtB | lipopolysaccharide core biosynthesis protein |
| Rv2878c | mpt53 | secreted protein Mpt53 |
| Rv1980c | mpt64 | secreted immunogenic protein Mpb64/Mpt64 |
| Rv2875 | mpt70 | major secreted immunogenic protein Mpt70 precursor |
| Rv2873 | mpt83 | surface lipoprotein Mpt83 |
| Rv0899 | ompA | member of OmpA family |
| Rv3810 | pirG | cell surface protein precursor (Erp protein) |
| Rv3782 | ${ }_{\text {rfb }}{ }^{\text {b }}$ | similar to rhamnosyl transferase |
| Rv1302 | fe | undecaprenyl-phosphate $\alpha-\mathrm{N}$ acetylglucosaminyltransferase |
| Rv2 145c | wag31 | antigen 84 (aka wag31) |
| Rv0431 | - | tuberculin related peptide (AT103) |
| Rv0954 | - | cell envelope antigen |
| Rv1514c |  | involved in polysaccharide synthesis |
| Rv1518 | - | involved in exopolysaccharide synthesis |
| Rv1758 |  | partial cutinase |
| Rv1910c |  | probable secreted protein |
| Rv1919c |  | weak similarity to pollen antigens |
| Rv1984c |  | probable secreted protein |
| Rv1987 | - | probable secreted protein |
| Rv2223c | - | probable exported protease |
| Rv2224c | - | probable exported protease |
| Rv2301 |  | probable cutinase |
| Rv2345 | - | precursor of probable membrane protein |
| Rv2672 | - | putative exported protease |
| Rv3019c | - | similar to Esat6 |
| Rv3036c |  | probable secreted protein |
| Rv3449 |  | probable precursor of serine protease |
| Rv3451 |  | probable cutinase |
| Rv3452 |  | probable cutinase precursor |
| Rv3724 |  | probable cutinase precursor |
| 3. Murein sacculus and peptidoglycan |  |  |
| Rv2911 | dacB | penicillin binding protein |
| Rv2981c | ddIA | D-alanine-D-alanine ligase A |
| Rv3809c | glf | UDP-galactopyranose mutase |
| Rv1018c | gimu | UDP-N-acetylglucosamine pyrophosphorylase |
| Rv3382c | lytB1 | LytB protein homologue |
| Rv1110 | lytB2 | very similar to LytB |
| Rv1315 | mura | UDP- N -acetylglucosamine-1-carboxyvinyltransferase |
| Rv0482 | murB | UDP-N-acetylenolpyruvoylglucosamine reductase |
| Rv2 152c | murc | UDP-N-acetyl-muramate-alanine ligase |
| Rv2 155c | murD | UDP-N-acetylmuramoylalanine-Dglutamate ligase |
| Rv2 158 c | murE | meso-diaminopimelate-adding enzyme |
| Rv2 1570 | murF | D-alanine:D-alanine-adding enzyme |
| Rv2 153c | murG | transferase in peptidoglycan synthesis |
| Rv1338 | murl | glutamate racemase |
| Rv2 156c | murX | phospho-N-acetylmuramoylpetapeptide transferase |
| Rv3332 | nagA | N -acetylglucosamine-6-Pdeacetylase |
| Rv0016c | pbpA | penicillin-binding protein |
| Rv2 163c | $p b p B$ | penicillin-binding protein 2 |
| Rv0050 | ponal | penicillin-bonding protein |
| Rv3682 | ponA2 | class A penicillin binding protein |
| Rv0017c Rv0907 | rodA | FtsW/RodA/SpovE family probable penicillin binding protein |


| Rv1367c | - | probable penicillin binding protein |
| :--- | :--- | :--- |
| Rv1730c | probable penicillin binding protein |  |
| Rv1922 | - | probable penicillin binding protein |
| Rv2864c | probable penicillin binding protein |  |
| Rv3330 | probable penicillin binding protein |  |
| Rv3627c | probable penicillin binding protein |  |

4. Conserved membrane proteins

Rv0402c mmpl 1 conserved large membrane protein
Rv0507 mmpL2 conserved large membrane protein
Rv0206c mmpL3 conserved large membrane protein
Rv0450c mmpL4 conserved large membrane protein
Rv0676c mmpL5 conserved large membrane
Rv1557 mmpl6 conserved large membrane protein
Rv2942 mmpL7 conserved large membrane protein
Rv3823c mmpL8 conserved large membrane protein
Rv2339 mmpL9 conserved large membrane protein
Rv1183 mmpL 10 conserved large membrane protein
Rv0202c mmpL 11 conserved large membrane protein
Rv1522c mmpL 12 conserved large membrane protein
Rv0403c mmpS1 conserved small membrane protein
Rv0506 mmpS2 conserved small membrane
Rv2198c mmpS3 conserved small membrane
protein
conserved small membrane
Rv0677c mmpS5 $\begin{aligned} & \text { protein } \\ & \text { conserved small membrane }\end{aligned}$ protein
5. Other membrane proteins 211
III. Cell processes
A. Transportbinding proteins

1. Amino acids

Rv2127 ansP
Rv0346c aroP2 probable aromatic amino acid
Rv0917 betP
Rv1704c cyca
permease
glycine betaine transport
transport of D-alanine, D-serine
and glycine
probable peptide transport system
permease
probable peptide transport system
permease
probable peptide transport system
permease
probable ABC-transporter
probable 4-amino butyrate trans-
probab
porter
porter
putative glutamine binding protein
probable ATP-binding transport
protein
probable oligopeptide transport
protein
oligopeptide transport protein oligopeptide transport system permease
probable peptide transport protein
arginine/ornithine transporter
probable cationic amino acid
transport
possible proline permease
putative ammonium transporter
putative calcium/proton antiporter probable magnesium and cobalt transport protein
cation-transporting ATPase
cation transport ATPase
cation transport ATPase
probable cadmium-transporting
ATPase
probable cation transport ATPase probable cation transport ATPase
probable cation transport ATPase
probable cation transport ATPase
C-terminal region putative cation-
C-terminal region putative cation-
transporting ATPase
transporting ATPase
probable magnesium transport

## ATPase

cation transport ATPase
putative Felll-dicitrate transporter iron transport protein Felll dici-
transporter
potassium-transporting ATPase A chain

| Rv1030 | kdpB | potassium-transporting ATPase B chain |
| :---: | :---: | :---: |
| Rv1031 | kdpC | potassium-transporting ATPase C chain |
| Rv3236c | kefB | probable glutathione-regulated potassium-efflux protein |
| Rv2877c | merT | possible mercury resistance transport system |
| Rv1811 | mgt $C$ | probable magnesium transport ATPase protein C |
| Rv0362 | mgtE | putative magnesium ion transporter |
| Rv2856 | nic | probable nickel transport |
| Rv0924c | nramp | transmembrane protein belonging to Nramp family |
| Rv2691 | trkA | probable potassium uptake protein |
| Rv2692 | trkB | probable potassium uptake protein |
| Rv2287 | yjcE | probable $\mathrm{Na+} / \mathrm{H}+$ exchanger |
| Rv2723 |  | probable membrane protein, tellurium resistance |
| Rv3162c |  | probable membrane protein |
| Rv3237c |  | possible potassium channel protein |
| Rv3743c |  | probable cation-transporting ATPase |
| 3. Carbohydrates, organic acids and alcohols |  |  |
| Rv2443 | $\operatorname{dct} A$ | C4-dicarboxylate transport protein |
| Rv3476c | kgtP | sugar transport protein |
| Rvi902c | nant | probable sialic acid transporter |
| Rv1236 | sugA | membrane protein probably involved in sugar transport |
| Rv1237 | sug $B$ | sugar transport protein |
| Rv1238 | sug C | ABC transporter component of sugar uptake system |
| Rv3331 | sugl | probable sugar transport protein |
| Rv2835c | ugpA | sn-glycerol-3-phosphate permease |
| Rv2833c | $u g p B$ | sn-glycerol-3-phosphate-binding periplasmic lipoprotein |
| Rv2832c | ugp C | sn-glycerol-3-phosphate transport ATP-binding protein |
| Rv2834c | ugpE | sn-glycerol-3-phosphate transport system protein |
| Rv2316 | uspA | sugar transport protein |
| Rv2318 | $u s p C$ | sugar transport protein |
| Rv2317 | uspe | sugar transport protein |
| Rvi200 | - | probable sugar transporter |
| Rv2038c | - | probable ABC sugar transporter |
| Rv2039c |  | probable sugar transporter |
| Rv2040c |  | probable sugar transporter |
| Rv2041c | - | probable sugar transporter |
| 4. Anions |  |  |
| Rv2684 | arsA | probable arsenical pump |
| Rv2685 | ars $B$ | probable arsenical pump |
| Rv3578 | arsB2 | probable arsenical pump |
| Rv2643 | ars $C$ | probable arsenical pump |
| Rv2397c | cysA | sulphate transport ATP-binding protein |
| Rv2399c | cys $T$ | sulphate transport system permease protein |
| Rv2398c | cysW | sulphate transport system permease protein |
| Rv1857 | $\bmod A$ | molybdate binding protein |
| Rv1858 | $\operatorname{modB}$ | transport system permease, molybdate uptake |
| Rv1859 | $\bmod C$ | molybdate uptake ABCtransporter |
| Rv1860 | modD | precursor of Apa (45/47 <br> kD secreted protein) |
| Rv2329c | nark1 | probable nitrite extrusion protein |
| Rv1737c | narK2 | nitrite extrusion protein |
| Rvo261c | nark3 | nitrite extrusion protein |
| Rv0267 | naru | similar to nitrite extrusion protein 2 |
| Rv0934 | phost | PstS component of phosphate uptake |
| Rv0928 | phos2 | PstS component of phosphate uptake |
| Rv0820 | phot | phosphate transport system $A B C$ transporter |
| Rv3301c | phoyt | phosphate transport system regulator |
| Rv0821c | phoy2 | phosphate transport system regulator |
| Rv0545c | pitA | low-affinity inorganic phosphate transporter |
| Rv2281 | pitB | phosphate permease |
| Rv0930 | psta1 | PstA component of phosphate uptake |
| Rv0936 | pstA2 | PstA component of phosphate uptake |
| Rv0933 | $p s t B$ | ABC transport component of phosphate uptake |
| Rv0935 | pstC | PstC component of phosphate uptake |
| Rv0929 | pstC2 | membrane-bound component of |



# Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence 

S. T. Cole ${ }^{\star}$, R. Brosch $^{\star}$, J. Parkhill, T. Garnier ${ }^{\star}$, C. Churcher, D. Harris, S. V. Gordon ${ }^{\star}$, K. Eiglmeier ${ }^{\star}$, S. Gas ${ }^{\star}$,<br>C. E. Barry III $\dagger$, F. Tekaia $\ddagger$, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies,<br>K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh§, J. McLean,<br>S. Moule, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M.-A. Rajandream, J. Rogers, S. Rutter,<br>K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead \& B. G. Barrell<br>Sanger Centre, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK<br>* Unité de Génétique Moléculaire Bactérienne, and $\ddagger$ Unité de Génétique Moléculaire des Levures, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France $\dagger$ Tuberculosis Research Unit, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA<br>§Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark


#### Abstract

Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises $4,411,529$ base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.


Despite the availability of effective short-course chemotherapy (DOTS) and the Bacille Calmette-Guerin (BCG) vaccine, the tubercle bacillus continues to claim more lives than any other single infectious agent ${ }^{1}$. Recent years have seen increased incidence of tuberculosis in both developing and industrialized countries, the widespread emergence of drug-resistant strains and a deadly synergy with the human immunodeficiency virus (HIV). In 1993, the gravity of the situation led the World Health Organisation (WHO) to declare tuberculosis a global emergency in an attempt to heighten public and political awareness. Radical measures are needed now to prevent the grim predictions of the WHO becoming reality. The combination of genomics and bioinformatics has the potential to generate the information and knowledge that will enable the conception and development of new therapies and interventions needed to treat this airborne disease and to elucidate the unusual biology of its aetiological agent, Mycobacterium tuberculosis.

The characteristic features of the tubercle bacillus include its slow growth, dormancy, complex cell envelope, intracellular pathogenesis and genetic homogeneity ${ }^{2}$. The generation time of M. tuberculosis, in synthetic medium or infected animals, is typically $\sim 24$ hours. This contributes to the chronic nature of the disease, imposes lengthy treatment regimens and represents a formidable obstacle for researchers. The state of dormancy in which the bacillus remains quiescent within infected tissue may reflect metabolic shutdown resulting from the action of a cell-mediated immune response that can contain but not eradicate the infection. As immunity wanes, through ageing or immune suppression, the dormant bacteria reactivate, causing an outbreak of disease often many decades after the initial infection ${ }^{3}$. The molecular basis of dormancy and reactivation remains obscure but is expected to be genetically programmed and to involve intracellular signalling pathways.

The cell envelope of $M$. tuberculosis, a Gram-positive bacterium with a G + C-rich genome, contains an additional layer beyond the peptidoglycan that is exceptionally rich in unusual lipids, glycoli-
pids and polysaccharides ${ }^{4,5}$. Novel biosynthetic pathways generate cell-wall components such as mycolic acids, mycocerosic acid, phenolthiocerol, lipoarabinomannan and arabinogalactan, and several of these may contribute to mycobacterial longevity, trigger inflammatory host reactions and act in pathogenesis. Little is known about the mechanisms involved in life within the macrophage, or the extent and nature of the virulence factors produced by the bacillus and their contribution to disease.
It is thought that the progenitor of the M. tuberculosis complex, comprising M. tuberculosis, M. bovis, M. bovis BCG, M. africanum and $M$. microti, arose from a soil bacterium and that the human bacillus may have been derived from the bovine form following the domestication of cattle. The complex lacks interstrain genetic diversity, and nucleotide changes are very rare ${ }^{6}$. This is important in terms of immunity and vaccine development as most of the proteins will be identical in all strains and therefore antigenic drift will be restricted. On the basis of the systematic sequence analysis of 26 loci in a large number of independent isolates ${ }^{6}$, it was concluded that the genome of $M$. tuberculosis is either unusually inert or that the organism is relatively young in evolutionary terms.
Since its isolation in 1905, the H37Rv strain of M. tuberculosis has found extensive, worldwide application in biomedical research because it has retained full virulence in animal models of tuberculosis, unlike some clinical isolates; it is also susceptible to drugs and amenable to genetic manipulation. An integrated map of the 4.4 megabase $(\mathrm{Mb})$ circular chromosome of this slow-growing pathogen had been established previously and ordered libraries of cosmids and bacterial artificial chromosomes (BACs) were available ${ }^{7,8}$.

## Organization and sequence of the genome

Sequence analysis. To obtain the contiguous genome sequence, a combined approach was used that involved the systematic sequence analysis of selected large-insert clones (cosmids and BACs) as well as
random small-insert clones from a whole-genome shotgun library. This culminated in a composite sequence of $4,411,529$ base pairs (bp) (Figs 1, 2), with a G + C content of $65.6 \%$. This represents the second-largest bacterial genome sequence currently available (after that of Escherichia coli $)^{9}$. The initiation codon for the dnaA gene, a hallmark for the origin of replication, oriC, was chosen as the start point for numbering. The genome is rich in repetitive DNA, particularly insertion sequences, and in new multigene families and duplicated housekeeping genes. The $\mathrm{G}+\mathrm{C}$ content is relatively constant throughout the genome (Fig. 1) indicating that horizontally transferred pathogenicity islands of atypical base composition are probably absent. Several regions showing higher than average G +C content (Fig. 1) were detected; these correspond to sequences belonging to a large gene family that includes the polymorphic $\mathrm{G}+$ C-rich sequences (PGRSs).
Genes for stable RNA. Fifty genes coding for functional RNA molecules were found. These molecules were the three species produced by the unique ribosomal RNA operon, the 10Sa RNA involved in degradation of proteins encoded by abnormal messenger RNA, the RNA component of RNase P, and 45 transfer RNAs. No 4.5S RNA could be detected. The rrn operon is situated unusually as it occurs about 1,500 kilobases ( kb ) from the putative oriC; most eubacteria have one or more $r r n$ operons near to oriC to exploit the gene-dosage effect obtained during replication ${ }^{10}$. This arrangement may be related to the slow growth of M. tuberculosis. The genes encoding tRNAs that recognize 43 of the 61 possible sense codons were distributed throughout the genome and, with one


Figure 1 Circular map of the chromosome of $M$. tuberculosis H37Rv. The outer circle shows the scale in Mb , with 0 representing the origin of replication. The first ring from the exterior denotes the positions of stable RNA genes (tRNAs are blue, others are pink) and the direct repeat region (pink cube); the second ring inwards shows the coding sequence by strand (clockwise, dark green; anticlockwise, light green); the third ring depicts repetitive DNA (insertion sequences, orange; 13E12 REP family, dark pink; prophage, blue); the fourth ring shows the positions of the PPE family members (green); the fifth ring shows the PE family members (purple, excluding PGRS); and the sixth ring shows the positions of the PGRS sequences (dark red). The histogram (centre) represents $\mathrm{G}+\mathrm{C}$ content, with $<65 \% \mathrm{G}+\mathrm{C}$ in yellow, and $>65 \% G+C$ in red. The figure was generated with software from DNASTAR.
exception, none of these uses A in the first position of the anticodon, indicating that extensive wobble occurs during translation. This is consistent with the high G + C content of the genome and the consequent bias in codon usage. Three genes encoding tRNAs for methionine were found; one of these genes (metV) is situated in a region that may correspond to the terminus of replication (Figs 1, 2). As met $V$ is linked to defective genes for integrase and excisionase, perhaps it was once part of a phage or similar mobile genetic element.
Insertion sequences and prophages. Sixteen copies of the promiscuous insertion sequence IS6110 and six copies of the more stable element IS1081 reside within the genome of $\mathrm{H} 37 \mathrm{Rv}^{8}$. One copy of IS1081 is truncated. Scrutiny of the genomic sequence led to the identification of a further 32 different insertion sequence elements, most of which have not been described previously, and of the 13E12 family of repetitive sequences which exhibit some of the characteristics of mobile genetic elements (Fig. 1). The newly discovered insertion sequences belong mainly to the IS3 and IS256 families, although six of them define a new group. There is extensive similarity between IS1561 and IS1552 with insertion sequence elements found in Nocardia and Rhodococcus spp., suggesting that they may be widely disseminated among the actinomycetes.
Most of the insertion sequences in M. tuberculosis H37Rv appear to have inserted in intergenic or non-coding regions, often near tRNA genes (Fig. 1). Many are clustered, suggesting the existence of insertional hot-spots that prevent genes from being inactivated, as has been described for Rhizobium ${ }^{11}$. The chromosomal distribution of the insertion sequences is informative as there appears to have been a selection against insertions in the quadrant encompassing oriC and an overrepresentation in the direct repeat region that contains the prototype IS6110. This bias was also observed experimentally in a transposon mutagenesis study ${ }^{12}$.
At least two prophages have been detected in the genome sequence and their presence may explain why M. tuberculosis shows persistent low-level lysis in culture. Prophages phiRv1 and phiRv2 are both $\sim 10 \mathrm{~kb}$ in length and are similarly organized, and some of their gene products show marked similarity to those encoded by certain bacteriophages from Streptomyces and saprophytic mycobacteria. The site of insertion of phiRvl is intriguing as it corresponds to part of a repetitive sequence of the 13E12 family that itself appears to have integrated into the biotin operon. Some strains of M. tuberculosis have been described as requiring biotin as a growth supplement, indicating either that phiRv1 has a polar effect on expression of the distal bio genes or that aberrant excision, leading to mutation, may occur. During the serial attenuation of $M$. bovis that led to the vaccine strain $M$. bovis BCG, the phiRv1 prophage was lost ${ }^{13}$. In a systematic study of the genomic diversity of prophages and insertion sequences (S.V.G. et al., manuscript in preparation), only IS1532 exhibited significant variability, indicating that most of the prophages and insertion sequences are currently stable. However, from these combined observations, one can conclude that horizontal transfer of genetic material into the free-living ancestor of the $M$. tuberculosis complex probably occurred in nature before the tubercle bacillus adopted its specialized intracellular niche.

Figure 2 Linear map of the chromosome of $M$. tuberculosis H37Rv showing the position and orientation of known genes and coding sequences (CDS). We used the following functional categories (adapted from ref. 20): lipid metabolism (black); intermediary metabolism and respiration (yellow); information pathways (pink); regulatory proteins (sky blue); conserved hypothetical proteins (orange); proteins of unknown function (light green); insertion sequences and phagerelated functions (blue); stable RNAs (purple); cell wall and cell processes (dark green); PE and PPE protein families (magenta); virulence, detoxification and adaptation (white). For additional information about gene functions, refer to http://www.sanger.ac.uk.

Genes encoding proteins. 3,924 open reading frames were identified in the genome (see Methods), accounting for $\sim 91 \%$ of the potential coding capacity (Figs 1, 2). A few of these genes appear to have in-frame stop codons or frameshift mutations (irrespective of the source of the DNA sequenced) and may either use frameshifting during translation or correspond to pseudogenes. Consistent with the high $\mathrm{G}+\mathrm{C}$ content of the genome, GTG initiation codons ( $35 \%$ ) are used more frequently than in Bacillus subtilis (9\%) and E. coli (14\%), although ATG (61\%) is the most common translational start. There are a few examples of atypical initiation codons, the most notable being the ATC used by infC, which begins with ATT in both B. subtilis and $E$. coli ${ }^{9}{ }^{14}$. There is a slight bias in the orientation of the genes (Fig. 1) with respect to the direction of replication as $\sim 59 \%$ are transcribed with the same polarity as replication, compared with $75 \%$ in B. subtilis. In other bacteria, genes transcribed in the same direction as the replication forks are believed to be expressed more efficiently ${ }^{9,14}$. Again, the more even distribution in gene polarity seen in $M$. tuberculosis may reflect the slow growth and infrequent replication cycles. Three genes (dnaB, recA and Rv1461) have been invaded by sequences encoding inteins (protein introns) and in all three cases their counterparts in M. leprae also contain inteins, but at different sites ${ }^{15}$ (S.T.C. et al., unpublished observations).
Protein function, composition and duplication. By using various database comparisons, we attributed precise functions to $\sim 40 \%$ of the predicted proteins and found some information or similarity for another $44 \%$. The remaining $16 \%$ resembled no known proteins and may account for specific mycobacterial functions. Examination of the amino-acid composition of the M. tuberculosis proteome by correspondence analysis ${ }^{16}$, and comparison with that of other microorganisms whose genome sequences are available, revealed a statistically significant preference for the amino acids Ala, Gly, Pro, Arg and Trp, which are all encoded by G + C-rich codons, and a comparative reduction in the use of amino acids encoded by A + Trich codons such as Asn, Ile, Lys, Phe and Tyr (Fig. 3). This approach also identified two groups of proteins rich in Asn or Gly that belong to new families, PE and PPE (see below). The fraction of the proteome that has arisen through gene duplication is similar to that seen in E. coli or B. subtilis ( $\sim 51 \%$; refs 9,14 ), except that the level of sequence conservation is considerably higher, indicating that there may be extensive redundancy or differential production of the corresponding polypeptides. The apparent lack of divergence following gene duplication is consistent with the hypothesis that M. tuberculosis is of recent descent ${ }^{6}$.

## General metabolism, regulation and drug resistance

Metabolic pathways. From the genome sequence, it is clear that the tubercle bacillus has the potential to synthesize all the essential amino acids, vitamins and enzyme co-factors, although some of the pathways involved may differ from those found in other bacteria. $M$. tuberculosis can metabolize a variety of carbohydrates, hydrocarbons, alcohols, ketones and carboxylic acids ${ }^{2,17}$. It is apparent from genome inspection that, in addition to many functions involved in lipid metabolism, the enzymes necessary for glycolysis, the pentose phosphate pathway, and the tricarboxylic acid and glyoxylate cycles are all present. A large number $(\sim 200)$ of oxidoreductases, oxygenases and dehydrogenases is predicted, as well as many oxygenases containing cytochrome P450, that are similar to fungal proteins involved in sterol degradation. Under aerobic growth conditions, ATP will be generated by oxidative phosphorylation from electron transport chains involving a ubiquinone cytochrome $b$ reductase complex and cytochrome $c$ oxidase. Components of several anaerobic phosphorylative electron transport chains are also present, including genes for nitrate reductase ( $n a r G H J I$ ), fumarate reductase ( $f r d A B C D$ ) and possibly nitrite reductase ( $n i r B D$ ), as well as a new reductase (narX) that results from a rearrangement of a homologue of the narGHJI operon. Two genes encoding haemoglobin-like
proteins, which may protect against oxidative stress or be involved in oxygen capture, were found. The ability of the bacillus to adapt its metabolism to environmental change is significant as it not only has to compete with the lung for oxygen but must also adapt to the microaerophilic/anaerobic environment at the heart of the burgeoning granuloma.
Regulation and signal transduction. Given the complexity of the environmental and metabolic choices facing M. tuberculosis, an extensive regulatory repertoire was expected. Thirteen putative sigma factors govern gene expression at the level of transcription initiation, and more than 100 regulatory proteins are predicted (Table 1). Unlike B. subtilis and E. coli, in which there are $>30$ copies of different two-component regulatory systems ${ }^{14}, M$. tuberculosis has only 11 complete pairs of sensor histidine kinases and response regulators, and a few isolated kinase and regulatory genes. This relative paucity in environmental signal transduction pathways is probably offset by the presence of a family of eukaryotic-like serine/ threonine protein kinases (STPKs), which function as part of a phosphorelay system ${ }^{18}$. The STPKs probably have two domains: the well-conserved kinase domain at the amino terminus is predicted to be connected by a transmembrane segment to the carboxy-terminal region that may respond to specific stimuli. Several of the predicted envelope lipoproteins, such as that encoded by $l p p R$ ( $R v 2403$ ), show extensive similarity to this putative receptor domain of STPKs, suggesting possible interplay. The STPKs probably function in signal transduction pathways and may govern important cellular decisions such as dormancy and cell division, and although their partners are unknown, candidate genes for phosphoprotein phosphatases have been identified.
Drug resistance. M. tuberculosis is naturally resistant to many antibiotics, making treatment difficult ${ }^{19}$. This resistance is due mainly to the highly hydrophobic cell envelope acting as a permeability barrier ${ }^{4}$, but many potential resistance determinants are also encoded in the genome. These include hydrolytic or drug-modifying enzymes such as $\beta$-lactamases and aminoglycoside acetyl transferases, and many potential drug-efflux systems, such as 14 members of the major facilitator family and numerous ABC transporters. Knowledge of these putative resistance mechanisms will promote better use of existing drugs and facilitate the conception of new therapies.


Figure 3 Correspondence analysis of the proteomes from extensively sequenced organisms as a function of amino-acid composition. Note the extreme position of M. tuberculosis and the shift in amino-acid preference reflecting increasing $G+C$ content from left to right. Abbreviations used: $A e$, Aquifex aeolicus; Af, Archaeoglobus fulgidis; Bb, Borrelia burgdorfei; Bs, B. subtilis; Ce, Caenorhabditis elegans; Ec, E. coli; Hi, Haemophilus influenzae; Hp, Helicobacter pylori; Mg, Mycoplasma genitalium; Mj, Methanococcus jannaschi; Mp, Mycoplasma pneumoniae; Mt, M. tuberculosis; Mth, Methanobacterium thermoautotrophicum; Sc, Saccharomyces cerevisiae; Ss, Synechocystis sp. strain PCC6803. F1 and F2, first and second factorial axes ${ }^{16}$.
a


Host membranes
b


Figure 4 Lipid metabolism. a, Degradation of host-cell lipids is vital in the intracellular life of M. tuberculosis. Host-cell membranes provide precursors for many metabolic processes, as well as potential precursors of mycobacterial cell-wall constituents, through the actions of a broad family of $\beta$-oxidative enzymes encoded by multiple copies in the genome. These enzymes produce acetyl CoA, which can be converted into many different metabolites and fuel for the bacteria through the actions of the enzymes of the citric acid cycle and the glyoxylate shunt of this cycle. b, The genes that synthesize mycolic acids, the dominant lipid component of the mycobacterial cell wall, include the type I fatty acid synthase (fas) and a unique type II system which relies on extension of a precursor bound to an acyl carrier protein to form full-length ( $\sim 80$-carbon) mycolic acids. The cma genes are responsible for cyclopropanation. c, The genes that produce phthiocerol dimycocerosate form a large operon and represent type I (mas) and type II (the pps operon) polyketide synthase systems. Functions are colour coordinated.


## Lipid metabolism

Very few organisms produce such a diverse array of lipophilic molecules as $M$. tuberculosis. These molecules range from simple fatty acids such as palmitate and tuberculostearate, through isoprenoids, to very-long-chain, highly complex molecules such as mycolic acids and the phenolphthiocerol alcohols that esterify with mycocerosic acid to form the scaffold for attachment of the mycosides. Mycobacteria contain examples of every known lipid and polyketide biosynthetic system, including enzymes usually found in mammals and plants as well as the common bacterial systems. The biosynthetic capacity is overshadowed by the even more remarkable radiation of degradative, fatty acid oxidation systems and, in total, there are $\sim 250$ distinct enzymes involved in fatty acid metabolism in M. tuberculosis compared with only 50 in $E$. coli ${ }^{20}$.
Fatty acid degradation. In vivo-grown mycobacteria have been suggested to be largely lipolytic, rather than lipogenic, because of the variety and quantity of lipids available within mammalian cells and the tubercle ${ }^{2}$ (Fig. 4a). The abundance of genes encoding components of fatty acid oxidation systems found by our genomic approach supports this proposition, as there are 36 acyl-CoA synthases and a family of 36 related enzymes that could catalyse the first step in fatty acid degradation. There are 21 homologous enzymes belonging to the enoyl-CoA hydratase/isomerase superfamily of enzymes, which rehydrate the nascent product of the acylCoA dehydrogenase. The four enzymes that convert the 3-hydroxy fatty acid into a 3-keto fatty acid appear less numerous, mainly


Figure 5 The PE and PPE protein families. a, Classification of the PE and PPE protein families. b, Sequence variation between M. tuberculosis H37Rv and M. bovis BCG-Pasteur in the PE-PGRS encoded by open reading frame (ORF) Rv0746.
because they are difficult to distinguish from other members of the short-chain alcohol dehydrogenase family on the basis of primary sequence. The five enzymes that complete the cycle by thiolysis of the $\beta$-ketoester, the acetyl-CoA C-acetyltransferases, do indeed appear to be a more limited family. In addition to this extensive set of dissociated degradative enzymes, the genome also encodes the canonical FadA/FadB $\beta$-oxidation complex (Rv0859 and Rv0860). Accessory activities are present for the metabolism of odd-chain and multiply unsaturated fatty acids.
Fatty acid biosynthesis. At least two discrete types of enzyme system, fatty acid synthase (FAS) I and FAS II, are involved in fatty acid biosynthesis in mycobacteria (Fig. 4b). FAS I (Rv2524, fas) is a single polypeptide with multiple catalytic activities that generates several shorter CoA esters from acetyl-CoA primers ${ }^{5}$ and probably creates precursors for elongation by all of the other fatty acid and polyketide systems. FAS II consists of dissociable enzyme components which act on a substrate bound to an acyl-carrier protein (ACP). FAS II is incapable of de novo fatty acid synthesis but instead elongates palmitoyl-ACP to fatty acids ranging from 24 to 56 carbons in length ${ }^{17,21}$. Several different components of FAS II may be targets for the important tuberculosis drug isoniazid, including the enoyl-ACP reductase $\operatorname{Inh} A^{22}$, the ketoacyl-ACP synthase KasA and the ACP AcpM ${ }^{21}$. Analysis of the genome shows that there are only three potential ketoacyl synthases: KasA and KasB are highly related, and their genes cluster with $a \subset p M$, whereas KasC is a more distant homologue of a ketoacyl synthase III system. The number of ketoacyl synthase and ACP genes indicates that there is a single FAS II system. Its genetic organization, with two clustered ketoacyl synthases, resembles that of type II aromatic polyketide biosynthetic gene clusters, such as those for actinorhodin, tetracycline and tetracenomycin in Streptomyces species ${ }^{23}$. InhA seems to be the sole enoyl-ACP reductase and its gene is co-transcribed with a $f a b G$ homologue, which encodes 3 -oxoacyl-ACP reductase. Both of these proteins are probably important in the biosynthesis of mycolic acids.
Fatty acids are synthesized from malonyl-CoA and precursors are generated by the enzymatic carboxylation of acetyl (or propionyl)CoA by a biotin-dependent carboxylase (Fig. 4b). From study of the genome we predict that there are three complete carboxylase systems, each consisting of an $\alpha$ - and a $\beta$-subunit, as well as three $\beta$-subunits without an $\alpha$-counterpart. As a group, all of the carboxylases seem to be more related to the mammalian homologues than to the corresponding bacterial enzymes. Two of these carboxylase systems (accA1, accD1 and accA2, accD2) are probably involved in degradation of odd-numbered fatty acids, as they are adjacent to genes for other known degradative enzymes. They may convert propionyl-CoA to succinyl-CoA, which can then be incorporated into the tricarboxylic acid cycle. The synthetic carboxylases ( $a c c A 3$, $\operatorname{accD3}$, accD4, accD5 and accD6) are more difficult to understand. The three extra $\beta$-subunits might direct carboxylation to the appropriate precursor or may simply increase the total amount of carboxylated precursor available if this step were ratelimiting.

Synthesis of the paraffinic backbone of fatty and mycolic acids in the cell is followed by extensive postsynthetic modifications and unsaturations, particularly in the case of the mycolic acids ${ }^{24,25}$. Unsaturation is catalysed either by a FabA-like $\beta$-hydroxyacylACP dehydrase, acting with a specific ketoacyl synthase, or by an aerobic terminal mixed function desaturase that uses both molecular oxygen and NADPH. Inspection of the genome revealed no obvious candidates for the FabA-like activity. However, three potential aerobic desaturases (encoded by $\operatorname{desA1}$, $\operatorname{des} A 2$ and $\operatorname{des} A 3)$ were evident that show little similarity to related vertebrate or yeast enzymes (which act on CoA esters) but instead resemble plant desaturases (which use ACP esters). Consequently, the genomic data indicate that unsaturation of the meromycolate chain may occur while the acyl group is bound to AcpM.

Much of the subsequent structural diversity in mycolic acids is
generated by a family of $S$-adenosyl-L-methionine-dependent enzymes, which use the unsaturated meromycolic acid as a substrate to generate cis and trans cyclopropanes and other mycolates. Six members of this family have been identified and characterized ${ }^{25}$ and two clustered, convergently transcribed new genes are evident in the genome (umaA1 and umaA2). From the functions of the known family members and the structures of mycolic acids in M. tuberculosis, it is tempting to speculate that these new enzymes may introduce the trans cyclopropanes into the meromycolate precursor. In addition to these two methyltransferases, there are two other unrelated lipid methyltransferases (Ufa1 and Ufa2) that share homology with cyclopropane fatty acid synthase of E. coli ${ }^{25}$. Although cyclopropanation seems to be a relatively common modification of mycolic acids, cyclopropanation of plasma-membrane constituents has not been described in mycobacteria. Tuberculostearic acid is produced by methylation of oleic acid, and may be synthesized by one of these two enzymes.

Condensation of the fully functionalized and preformed meromycolate chain with a 26 -carbon $\alpha$-branch generates full-length mycolic acids that must be transported to their final location for attachment to the cell-wall arabinogalactan. The transfer and subsequent transesterification is mediated by three well-known immunogenic proteins of the antigen 85 complex ${ }^{26}$. The genome encodes a fourth member of this complex, antigen $85 \mathrm{C}^{\prime}$ ( $f b p C 2$, Rv0129), which is highly related to antigen 85C. Further studies are needed to show whether the protein possesses mycolytransferase activity and to clarify the reason behind the apparent redundancy. Polyketide synthesis. Mycobacteria synthesize polyketides by several different mechanisms. A modular type I system, similar to that involved in erythromycin biosynthesis ${ }^{23}$, is encoded by a very large operon, ppsABCDE, and functions in the production of phenolphthiocerol ${ }^{5}$. The absence of a second type I polyketide synthase suggests that the related lipids phthiocerol A and B, phthiodiolone A and phthiotriol may all be synthesized by the same system, either from alternative primers or by differential postsynthetic modification. It is physiologically significant that the pps gene cluster occurs immediately upstream of mas, which encodes the multifunctional enzyme mycocerosic acid synthase (MAS), as their products phthiocerol and mycocerosic acid esterify to form the very abundant cell-wall-associated molecule phthiocerol dimycocerosate (Fig. 4c).

Members of another large group of polyketide synthase enzymes are similar to MAS, which also generates the multiply methylbranched fatty acid components of mycosides and phthiocerol dimycocerosate, abundant cell-wall-associated molecules ${ }^{5}$. Although some of these polyketide synthases may extend type I FAS CoA primers to produce other long-chain methyl-branched fatty acids such as mycolipenic, mycolipodienic and mycolipanolic acids or the phthioceranic and hydroxyphthioceranic acids, or may even show functional overlap ${ }^{5}$, there are many more of these enzymes than there are known metabolites. Thus there may be new lipid and polyketide metabolites that are expressed only under certain conditions, such as during infection and disease.

A fourth class of polyketide synthases is related to the plant enzyme superfamily that includes chalcone and stilbene synthase ${ }^{23}$. These polyketide synthases are phylogenetically divergent from all other polyketide and fatty acid synthases and generate unreduced polyketides that are typically associated with anthocyanin pigments and flavonoids. The function of these systems, which are often linked to apparent type I modules, is unknown. An example is the gene cluster spanning $p k s 10, p k s 7, p k s 8$ and $p k s 9$, which includes two of the chalcone-synthase-like enzymes and two modules of an apparent type I system. The unknown metabolites produced by these enzymes are interesting because of the potent biological activities of some polyketides such as the immunosuppressor rapamycin.
Siderophores. Peptides that are not ribosomally synthesized are
made by a process that is mechanistically analogous to polyketide synthesis ${ }^{23,27}$. These peptides include the structurally related ironscavenging siderophores, the mycobactins and the exochelins ${ }^{2,28}$, which are derived from salicylate by the addition of serine (or threonine), two lysines and various fatty acids and possible polyketide segments. The $m b t$ operon, encoding one apparent salicylateactivating protein, three amino-acid ligases, and a single module of a type I polyketide synthase, may be responsible for the biosynthesis of the mycobacterial siderophores. The presence of only one nonribosomal peptide-synthesis system indicates that this pathway may generate both siderophores and that subsequent modification of a single $\epsilon$-amino group of one lysine residue may account for the different physical properties and function of the siderophores ${ }^{28}$.

## Immunological aspects and pathogenicity

Given the scale of the global tuberculosis burden, vaccination is not only a priority but remains the only realistic public health intervention that is likely to affect both the incidence and the prevalence of the disease ${ }^{29}$. Several areas of vaccine development are promising, including DNA vaccination, use of secreted or surface-exposed proteins as immunogens, recombinant forms of BCG and rational attenuation of $M$. tuberculosis ${ }^{29}$. All of these avenues of research will benefit from the genome sequence as its availability will stimulate more focused approaches. Genes encoding $\sim 90$ lipoproteins were identified, some of which are enzymes or components of transport systems, and a similar number of genes encoding preproteins (with type I signal peptides) that are probably exported by the Secdependent pathway. M. tuberculosis seems to have two copies of secA. The potent T-cell antigen Esat-6 (ref. 30), which is probably secreted in a Sec-independent manner, is encoded by a member of a multigene family. Examination of the genetic context reveals several similarly organized operons that include genes encoding large ATPhydrolysing membrane proteins that might act as transporters. One of the surprises of the genome project was the discovery of two extensive families of novel glycine-rich proteins, which may be of immunological significance as they are predicted to be abundant and potentially polymorphic antigens.
The PE and PPE multigene families. About $10 \%$ of the coding capacity of the genome is devoted to two large unrelated families of acidic, glycine-rich proteins, the PE and PPE families, whose genes are clustered (Figs 1,2) and are often based on multiple copies of the polymorphic repetitive sequences referred to as PGRSs, and major polymorphic tandem repeats (MPTRs), respectively ${ }^{31,32}$. The names PE and PPE derive from the motifs Pro-Glu (PE) and Pro-ProGlu (PPE) found near the N terminus in most cases ${ }^{33}$. The 99 members of the PE protein family all have a highly conserved Nterminal domain of $\sim 110$ amino-acid residues that is predicted to have a globular structure, followed by a C-terminal segment that varies in size, sequence and repeat copy number (Fig. 5). Phylogenetic analysis separated the PE family into several subfamilies. The largest of these is the highly repetitive PGRS class, which contains 61 members; members of the other subfamilies, share very limited sequence similarity in their C-terminal domains (Fig. 5). The predicted molecular weights of the PE proteins vary considerably as a few members contain only the N -terminal domain, whereas most have C-terminal extensions ranging in size from 100 to 1,400 residues. The PGRS proteins have a high glycine content (up to $50 \%$ ), which is the result of multiple tandem repetitions of Gly-Gly-Ala or Gly-Gly-Asn motifs, or variations thereof.
The 68 members of the PPE protein family (Fig. 5) also have a conserved N-terminal domain that comprises $\sim 180$ amino-acid residues, followed by C-terminal segments that vary markedly in sequence and length. These proteins fall into at least three groups, one of which constitutes the MPTR class characterized by the presence of multiple, tandem copies of the motif Asn-X-Gly-X-Gly-Asn-X-Gly. The second subgroup contains a characteristic, well-conserved motif around position 350 , whereas the third contains
proteins that are unrelated except for the presence of the common 180-residue PPE domain.

The subcellular location of the PE and PPE proteins is unknown and in only one case, that of a lipase (Rv3097), has a function been demonstrated. On examination of the protein database from the extensively sequenced M. leprae ${ }^{15}$, no PGRS- or MPTR-related polypeptides were detected but a few proteins belonging to the non-MPTR subgroup of the PPE family were found. These proteins include one of the major antigens recognized by leprosy patients, the serine-rich antigen ${ }^{34}$. Although it is too early to attribute biological functions to the PE and PPE families, it is tempting to speculate that they could be of immunological importance. Two interesting possibilities spring to mind. First, they could represent the principal source of antigenic variation in what is otherwise a genetically and antigenically homogeneous bacterium. Second, these glycine-rich proteins might interfere with immune responses by inhibiting antigen processing.
Several observations and results support the possibility of antigenic variation associated with both the PE and the PPE family proteins. The PGRS member Rv1759 is a fibronectin-binding protein of relative molecular mass 55,000 (ref. 35) that elicits a variable antibody response, indicating either that individuals mount different immune responses or that this PGRS protein may vary between strains of M. tuberculosis. The latter possibility is supported by restriction fragment length polymorphisms for various PGRS and MPTR sequences in clinical isolates ${ }^{33}$. Direct support for genetic variation within both the PE and the PPE families was obtained by comparative DNA sequence analysis (Fig. 5). The gene for the PE-PGRS protein Rv0746 of BCG differs from that in H37Rv by the deletion of 29 codons and the insertion of 46 codons. Similar variation was seen in the gene for the PPE protein Rv0442 (data not shown). As these differences were all associated with repetitive sequences they could have resulted from intergenic or intragenic recombinational events or, more probably, from strand slippage during replication ${ }^{32}$. These mechanisms are known to generate antigenic variability in other bacterial pathogens ${ }^{36}$.
There are several parallels between the PGRS proteins and the Epstein-Barr virus nuclear antigens (EBNAs). Members of both polypeptide families are glycine-rich, contain extensive Gly-Ala repeats, and exhibit variation in the length of the repeat region between different isolates. The Gly-Ala repeat region of EBNA1 functions as a cis-acting inhibitor of the ubiquitin/proteasome antigen-processing pathway that generates peptides presented in the context of major histocompatibility complex (MHC) class I molecules ${ }^{37,38}$. MHC class I knockout mice are very susceptible to $M$. tuberculosis, underlining the importance of a cytotoxic T-cell response in protection against disease ${ }^{3,39}$. Given the many potential effects of the PPE and PE proteins, it is important that further studies are performed to understand their activity. If extensive antigenic variability or reduced antigen presentation were indeed found, this would be significant for vaccine design and for understanding protective immunity in tuberculosis, and might even explain the varied responses seen in different BCG vaccination programmes ${ }^{40}$.
Pathogenicity. Despite intensive research efforts, there is little information about the molecular basis of mycobacterial virulence ${ }^{41}$. However, this situation should now change as the genome sequence will accelerate the study of pathogenesis as never before, because other bacterial factors that may contribute to virulence are becoming apparent. Before the completion of the genome sequence, only three virulence factors had been described ${ }^{41}$ : catalase-peroxidase, which protects against reactive oxygen species produced by the phagocyte; $m c e$, which encodes macrophage-colonizing factor ${ }^{42}$; and a sigma factor gene, sigA (aka rpoV), mutations in which can lead to attenuation ${ }^{41}$. In addition to these single-gene virulence factors, the mycobacterial cell wall ${ }^{4}$ is also important in pathology,
but the complex nature of its biosynthesis makes it difficult to identify critical genes whose inactivation would lead to attenuation.

On inspection of the genome sequence, it was apparent that four copies of $m c e$ were present and that these were all situated in operons, comprising eight genes, organized in exactly the same manner. In each case, the genes preceding mce code for integral membrane proteins, whereas $m c e$ and the following five genes are all predicted to encode proteins with signal sequences or hydrophobic stretches at the N terminus. These sets of proteins, about which little is known, may well be secreted or surface-exposed; this is consistent with the proposed role of Mce in invasion of host cells ${ }^{42}$. Furthermore, a homologue of $s m p B$, which has been implicated in intracellular survival of Salmonella typhimurium, has also been identified ${ }^{43}$. Among the other secreted proteins identified from the genome sequence that could act as virulence factors are a series of phospholipases C, lipases and esterases, which might attack cellular or vacuolar membranes, as well as several proteases. One of these phospholipases acts as a contact-dependent haemoly$\sin (\mathrm{N}$. Stoker, personal communication). The presence of storage proteins in the bacillus, such as the haemoglobin-like oxygen captors described above, points to its ability to stockpile essential growth factors, allowing it to persist in the nutrient-limited environment of the phagosome. In this regard, the ferritin-like proteins, encoded by $b f r A$ and $b f r B$, may be important in intracellular survival as the capacity to acquire enough iron in the vacuole is very limited.

## Methods

Sequence analysis. Initially, $\sim 3.2 \mathrm{Mb}$ of sequence was generated from cosmids ${ }^{8}$ and the remainder was obtained from selected BAC clones ${ }^{7}$ and 45,000 whole-genome shotgun clones. Sheared fragments ( $1.4-2.0 \mathrm{~kb}$ ) from cosmids and BACs were cloned into M13 vectors, whereas genomic DNA was cloned in pUC18 to obtain both forward and reverse reads. The PGRS genes were grossly underrepresented in pUC18 but better covered in the BAC and cosmid M13 libraries. We used small-insert libraries ${ }^{44}$ to sequence regions prone to compression or deletion and, in some cases, obtained sequences from products of the polymerase chain reaction or directly from $\mathrm{BACs}^{7}$. All shotgun sequencing was performed with standard dye terminators to minimize compression problems, whereas finishing reactions used dRhodamine or BigDye terminators (http://www.sanger.ac.uk). Problem areas were verified by using dye primers. Thirty differences were found between the genomic shotgun sequences and the cosmids; twenty of which were due to sequencing errors and ten to mutations in cosmids ( 1 error per 320 kb ). Less than $0.1 \%$ of the sequence was from areas of single-clone coverage, and $<0.2 \%$ was from one strand with only one sequencing chemistry.
Informatics. Sequence assembly involved PHRAP, GAP4 (ref. 45) and a customized perl script that merges sequences from different libraries and generates segments that can be processed by several finishers simultaneously. Sequence analysis and annotation was managed by DIANA (B.G.B. et al., unpublished). Genes encoding proteins were identified by TB-parse ${ }^{46}$ using a hidden Markov model trained on known M. tuberculosis coding and noncoding regions and translation-initiation signals, with corroboration by positional base preference. Interrogation of the EMBL, TREMBL, SwissProt, PROSITE $^{47}$ and in-house databases involved BLASTN, BLASTX ${ }^{48}$, DOTTER (http://www.sanger.ac.uk) and FASTA ${ }^{49}$. tRNA genes were located and identified using tRNAscan and tRNAscan-SE ${ }^{50}$. The complete sequence, a list of annotated cosmids and linking regions can be found on our website (http:// www. sanger.ac.uk) and in MycDB (http://www.pasteur.fr/mycdb/).

Received 15 April; accepted 8 May 1998.

1. Snider, D. E. Jr, Raviglione, M. \& Kochi, A. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 2-11 (Am. Soc. Microbiol., Washington DC, 1994).
2. Wheeler, P. R. \& Ratledge, C. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 353-385 (Am. Soc. Microbiol., Washington DC, 1994).
3. Chan, J. \& Kaufmann, S. H. E. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 271-284 (Am. Soc. Microbiol., Washington DC, 1994).
4. Brennan, P. J. \& Draper, P. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 271-284 (Am. Soc. Microbiol., Washington DC, 1994).
5. Kolattukudy, P. E., Fernandes, N. D., Azad, A. K., Fitzmaurice, A. M. \& Sirakova, T. D. Biochemistry
and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol. 24, 263-270 (1997).
6. Sreevatsan, S. et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl Acad. Sci. USA 94, 98699874 (1997).
7. Brosch, R. et al. Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing and comparative genomics. Infect. Iттип. 66, 2221-2229 (1998).
8. Philipp, W. J. et al. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc. Natl Acad. Sci. USA 93, 31323137 (1996).
9. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1462 (1997).
10. Cole, S. T. \& Saint-Girons, I. Bacterial genomics. FEMS Microbiol. Rev. 14, 139-160 (1994).
11. Freiberg, C. et al. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387, 394-401 (1997).
12. Bardarov, S. et al. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 94, 10961-10966 (1997).
13. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C. \& Stover, C. K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274-1282 (1996).
14. Kunst, F. et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249-256 (1997).
15. Smith, D. R. et al. Multiplex sequencing of 1.5 Mb of the Mycobacterium leprae genome. Genome Res. 7, 802-819 (1997).
16. Greenacre, M. Theory and Application of Correspondence Analysis (Academic, London, 1984).
17. Ratledge, C. R. in The Biology of the Mycobacteria (eds Ratledge, C. \& Stanford, J.) 53-94 (Academic, San Diego, 1982).
18. Av-Gay, Y. \& Davies, J. Components of eukaryotic-like protein signaling pathways in Mycobacterium tuberculosis. Microb. Comp. Genomics 2, 63-73 (1997).
19. Cole, S. T. \& Telenti, A. Drug resistance in Mycobacterium tuberculosis. Eur. Resp. Rev. 8, 701S-713S (1995).
20. Riley, M. \& Labedan, B. in Escherichia coli and Salmonella (ed. Neidhardt, F. C.) 2118-2202 (ASM, Washington, 1996).
21. Mdluli, K. et al. Inhibition of a Mycobacterium tuberculosis $\beta$-ketoacyl ACP synthase by isoniazid. Science 280, 1607-1610 (1998)
22. Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227-230 (1994).
23. Hopwood, D. A. Genetic contributions to understanding polyketide synthases. Chem. Rev. 97, 24652497 (1997).
24. Minnikin, D. E. in The Biology of the Mycobacteria (eds Ratledge, C. \& Stanford, J.) 95-184 (Academic, London, 1982).
25. Barry, C. E. III et al. Mycolic acids: structure, biosynthesis, and phsyiological functions. Prog. Lipid Res. (in the press).
26. Belisle, J. T. et al. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276, 1420-1422 (1997)
27. Marahiel, M. A., Stachelhaus, T. \& Mootz, H. D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97, 2651-2673 (1997).
28. Gobin, J. et al. Iron acquisition by Mycobacterium tuberculosis: isolation and characterization of a family of iron-binding exochelins. Proc. Natl Acad. Sci. USA 92, 5189-5193 (1995)
29. Young, D. B. \& Fruth, U. in New Generation Vaccines (eds Levine, M., Woodrow, G., Kaper, J. \& Cobon, G. S.) 631-645 (Marcel Dekker, New York, 1997).
30. Sorensen, A. L., Nagai, S., Houen, G., Andersen, P. \& Anderson, A. B. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect. Immun. 63,

1710-1717 (1995).
31. Hermans, P. W. M., van Soolingen, D. \& van Embden, J. D. A. Characterization of a major polymorphic tandem repeat in Mycobacterium tuberculosis and its potential use in the epidemiology of Mycobacterium kansasii and Mycobacterium gordonae. J. Bacteriol. 174, 4157-4165 (1992).
32. Poulet, S. \& Cole, S. T. Characterisation of the polymorphic GC-rich repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch. Microbiol. 163, 87-95 (1995).
33. Cole, S. T. \& Barrell, B. G. in Genetics and Tuberculosis (eds Chadwick, D. J. \& Cardew, G., Novartis Foundation Symp. 217) 160-172 (Wiley, Chichester, 1998).
34. Vega-Lopez, F. et al. Sequence and immunological characterization of a serine-rich antigen from Mycobacterium leprae. Infect. Imтип. 61, 2145-2153 (1993).
35. Abou-Zeid, C. et al. Genetic and immunological analysis of Mycobacterium tuberculosis fibronectinbinding proteins. Infect. Immun. 59, 2712-2718 (1991).
36. Robertson, B. D. \& Meyer, T. F. Genetic variation in pathogenic bacteria. Trends Genet. 8, 422-427 (1992).
37. Levitskaya, J. et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375, 685-688 (1995).
38. Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. \& Masucci, M. G. Inhibition of ubiquitin/ proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA 94, 12616-12621 (1997).
39. Flynn, J. L., Goldstein, M. A., Treibold, K. J., Koller, B. \& Bloom, B. R. Major histocompatability complex class-I restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl Acad. Sci. USA 89, 12013-12017 (1992).
40. Bloom, B. R. \& Fine, P. E. M. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 531-557 (Am. Soc. Microbiol., Washington DC, 1994).
41. Collins, D. M. In search of tuberculosis virulence genes. Trends Microbiol. 4, 426-430 (1996).
42. Arruda, S., Bomfim, G., Knights, R., Huima-Byron, T. \& Riley, L. W. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261, 1454-1457 (1993).
43. Baumler, A. J., Kusters, J. G., Stojikovic, I. \& Heffron, F. Salmonella typhimurium loci involved in survival within macrophages. Infect. Immun. 62, 1623-1630 (1994).
44. McMurray, A. A., Sulston, J. E. \& Quail, M. A. Short-insert libraries as a method of problem solving in genome sequencing. Genome Res. 8, 562-566 (1998).
45. Bonfield, J. K., Smith, K. F. \& Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 24, 4992-4999 (1995).
46. Krogh, A., Mian, I. S. \& Haussler, D. A hidden Markov model that finds genes in E. coli DNA. Nucleic Acids Res. 22, 4768-4778 (1994).
47. Bairoch, A., Bucher, P. \& Hofmann, K. The PROSITE database, its status in 1997. Nucleic Acids Res. 25, 217-221 (1997).
48. Altschul, S., Gish, W., Miller, W., Myers, E. \& Lipman, D. A basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990).
49. Pearson, W. \& Lipman, D. Improved tools for biological sequence comparisons. Proc. Natl Acad. USA 85, 2444-2448 (1988).
50. Lowe, T. M. \& Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic DNA. Nucleic Acids Res. 25, 955-964 (1997).

Acknowledgements. We thank Y. Av-Gay, F.-C. Bange, A. Danchin, B. Dujon, W. R. Jacobs Jr, L. Jones, M. McNeil, I. Moszer, P. Rice and J. Stephenson for advice, reagents and support. This work was supported by the Wellcome Trust. Additional funding was provided by the Association Française Raoul Follereau, the World Health Organisation and the Institut Pasteur. S.V.G. received a Wellcome Trust travelling research fellowship.

Correspondence and requests for materials should be addressed to B.G.B. (barrell@sanger.ac.uk) or S.T.C (stcole@pasteur.fr). The complete sequence has been deposited in EMBL/GenBank/DDBJ as MTBH37RV, accession number AL123456.

Table 1. Functional classification of Mycobacterium tuberculosis protein-coding genes

| I. Small-molecule metabolism |  |  |
| :---: | :---: | :---: |
|  |  |  |
| 1. Carbon compounds |  |  |
| Rv0186 | bgls | $\beta$-glucosidase |
| Rv2202c | cbhK | carbohydrate kinase |
| Rv0727c | fucA | L-fuculose phosphate aldolase |
| Rv1731 | gabD1 | succinate-semialdehyde dehydrogenase |
| Rv0234c | gabD2 | succinate-semialdehyde dehydrogenase |
| Rv0501 | galE1 | UDP-glucose 4-epimerase |
| Rv0536 | galE2 | UDP-glucose 4-epimerase |
| Rv0620 | galk | galactokinase |
| Rv0619 | galt | galactose-1-phosphate uridylyltransferase C-term |
| Rv0618 | galt ${ }^{\prime}$ | galactose-1-phosphate uridylyltransferase N -term |
| Rv0993 | galu | UTP-glucose-1-phosphate uridylyltransferase |
| Rv3696c | glpK | ATP:glycerol 3-phosphotransferase |
| Rv3255c | manA | mannose-6-phosphate isomerase |
| Rv3441c | mrsA | phosphoglucomutase or phosphomannomutase |
| Rv0118c | oxcA | oxalyl-CoA decarboxylase |
| Rv3068c | pgmA | phosphoglucomutase |
| Rv3257c | pmmA | phosphomannomutase |
| Rv3308 | pmmB | phosphomannomutase |
| Rv2702 | ppgK | polyphosphate glucokinase |
| Rv0408 | pta | phosphate acetyltransferase |
| Rv0729 | $x y / B$ | xylulose kinase |
| Rv1096 | - | carbohydrate degrading enzyme |
| 2. Amino acids and amines |  |  |
| Rv1905c | aao | D-amino acid oxidas |
| Rv2531c | adi | ornithine/arginine decarboxylase |
| Rv2780 | ald | L-alanine dehydrogenase |
| Rv1538c | ansA | L-asparaginase |
| Rv1001 | cA | arginine deiminase |
| Rv0753c | mmsA | methylmalmonate semialdehyde dehydrogenase |
| Rv0751c | mmsB | methylmalmonate semialdehyde oxidoreductase |
| Rv1187 | rocA | pyrroline-5-carboxylate dehydrogenase |
| Rv2322c | rocD1 | ornithine aminotransferase |
| Rv2321c | rocD2 | ornithine aminotransferase |
| Rv1848 | ureA | urease $\gamma$ subunit |
| Rv1849 | ure $B$ | urease $\beta$ subunit |
| Rv1850 | ureC | urease $\alpha$ subunit |
| Rv1853 | ureD | urease accessory protein |
| Rv1851 | ureF | urease accessory protein |
| Rv1852 | ureG | urease accessory protein |
| Rv2913c |  | probable D-amino acid aminohydrolase |
| Rv3551 | - | possible glutaconate CoAtransferase |
| 3. Fatty acids |  |  |
| Rv2501c | accA1 | acetyl/propionyl-CoA carboxylase, $\alpha$ subunit |
| Rv0973c | accA2 | acetyl/propionyl-CoA carboxylase, $\alpha$ subunit |
| Rv2502c | accD1 | acetyl/propionyl-CoA carboxylase, $\beta$ subunit |
| Rv0974c | accD2 | acety//propionyl-CoA carboxylase, $\beta$ subunit |
| Rv3667 | acs | acetyl-CoA synthase |
| Rv3409c | chod | cholesterol oxidase |
| Rv0222 | echA1 | enoyl-CoA hydratase/isomerase superfamily |
| Rv0456c | echA2 | enoyl-CoA hydratase/isomerase superfamily |
| Rv0632c | echA3 | enoyl-CoA hydratase/isomerase superfamily |
| Rv0673 | echA4 | enoyl-CoA hydratase/isomerase superfamily |
| Rv0675 | echA5 | enoyl-CoA hydratase/isomerase superfamily |
| Rv0905 | echA6 | enoyl-CoA hydratase/isomerase superfamily (aka ecch) |
| Rv0971c | echA7 | enoyl-CoA hydratase/isomerase superfamily |
| Rv1070c | echA8 | enoyl-CoA hydratase/isomerase superfamily |
| Rv1071c | echA9 | enoyl-CoA hydratase/isomerase superfamily |
| Rv1142c | echA10 | enoyl-CoA hydratase/isomerase superfamily |
| Rv1141c | echA11 | enoyl-CoA hydratase/isomerase superfamily |
| Rv1472 | echA12 | enoyl-CoA hydratase/isomerase superfamily |
| Rv1935c | echA13 | enoyl-CoA hydratase/isomerase superfamily |
| Rv2486 | echA14 | enoyl-CoA hydratase/isomerase superfamily |
| Rv2679 | echA15 | enoyl-CoA hydratase/isomerase |


|  |  | superfamily |
| :---: | :---: | :---: |
| Rv2831 | echA16 | enoyl-CoA hydratase/isomerase superfamily |
| Rv3039c | echA17 | enoyl-CoA hydratase/isomerase superfamily |
| Rv3373 | echA18 | enoyl-CoA hydratase/isomerase superfamily, N -term |
| Rv3374 | echA18' | enoyl-CoA hydratase/isomerase superfamily, C-term |
| Rv3516 | echA19 | enoyl-CoA hydratase/isomerase superfamily |
| Rv3550 | echA20 | enoyl-CoA hydratase/isomerase superfamily |
| Rv3774 | echA21 | enoyl-CoA hydratase/isomerase superfamily |
| Rv0859 | $f a d A$ | $\beta$ oxidation complex, $\beta$ subunit (acetyl-CoA C-acetyltransferase) |
| Rv0243 | fadA2 | acetyl-CoA C-acetyltransferase |
| Rv1074c | fadA3 | acetyl-CoA C-acetyltransferase |
| Rv1323 | fadA4 | acetyl-CoA C-acetyltransferase (aka thiL) |
| Rv3546 | fadA5 | acetyl-CoA C-acetyltransferase |
| Rv3556c | fadA6 | acetyl-CoA C-acetyltransferase |
| Rv0860 | $f a d B$ | $\beta$ oxidation complex, $\alpha$ subunit (multiple activities) |
| Rv0468 | fadB2 | 3-hydroxyacyl-CoA dehydrogenase |
| Rv1715 | fadB3 | 3-hydroxyacyl-CoA dehydrogenase |
| Rv3141 | fadB4 | 3-hydroxyacyl-CoA dehydrogenase |
| Rv1912c | fadB5 | 3-hydroxyacyl-CoA dehydrogenase |
| Rv1750c | fadD1 | acyl-CoA synthase |
| Rv0270 | fadD2 | acyl-CoA synthase |
| Rv3561 | fadD3 | acyl-CoA synthase |
| Rv0214 | fadD4 | acyl-CoA synthase |
| Rv0166 | fadD5 | acyl-CoA synthase |
| Rv1206 | fadD6 | acyl-CoA synthase |
| Rv0119 | fadD7 | acyl-CoA synthase |
| Rv0551c | fadD8 | acyl-CoA synthase |
| Rv2590 | fadD9 | acyl-CoA synthase |
| Rv0099 | fadD10 | acyl-CoA synthase |
| Rv1550 | fadD11 | acyl-CoA synthase, N -term |
| Rv1549 | fadD11' | acyl-CoA synthase, C-term |
| Rv1427c | fadD12 | acyl-CoA synthase |
| Rv3089 | fadD13 | acyl-CoA synthase |
| Rv1058 | fadD14 | acyl-CoA synthase |
| Rv2187 | fadD15 | acyl-CoA synthase |
| Rv0852 | fadD16 | acyl-CoA synthase |
| Rv3506 | fadD17 | acyl-CoA synthase |
| Rv3513c | fadD18 | acyl-CoA synthase |
| Rv3515c | fadD19 | acyl-CoA synthase |
| Rv1185c | fadD21 | acyl-CoA synthase |
| Rv2948c | fadD22 | acyl-CoA synthase |
| Rv3826 | fadD23 | acyl-CoA synthase |
| Rv1529 | fadD24 | acyl-CoA synthase |
| Rv1521 | fadD25 | acyl-CoA synthase |
| Rv2930 | fadD26 | acyl-CoA synthase |
| Rv0275c | fadD27 | acyl-CoA synthase |
| Rv2941 | fadD28 | acyl-CoA synthase |
| Rv2950c | fadD29 | acyl-CoA synthase |
| Rv0404 | fadD30 | acyl-CoA synthase |
| Rv1925 | fadD31 | acyl-CoA synthase |
| Rv3801c | fadD32 | acyl-CoA synthase |
| Rv1345 | fadD33 | acyl-CoA synthase |
| Rv0035 | fadD34 | acyl-CoA synthase |
| Rv2505c | fadD35 | acyl-CoA synthase |
| Rv1193 | fadD36 | acyl-CoA synthase |
| Rv0131c | fadE1 | acyl-CoA dehydrogenase |
| Rv0154c | fadE2 | acyl-CoA dehydrogenase |
| Rv0215c | fadE3 | acyl-CoA dehydrogenase |
| Rv0231 | fadE4 | acyl-CoA dehydrogenase |
| Rv0244c | fadE5 | acyl-CoA dehydrogenase |
| Rv0271c | fadE6 | acyl-CoA dehydrogenase |
| Rv0400c | fadE7 | acyl-CoA dehydrogenase |
| Rv0672 | fadE8 | acyl-CoA dehydrogenase (aka aidB) |
| Rv0752c | fadE9 | acyl-CoA dehydrogenase |
| Rv0873 | fadE10 | acyl-CoA dehydrogenase |
| Rv0972c | fadE12 | acyl-CoA dehydrogenase |
| Rv0975c | fadE13 | acyl-CoA dehydrogenase |
| Rv1346 | fadE14 | acyl-CoA dehydrogenase |
| Rv1467c | fadE15 | acyl-CoA dehydrogenase |
| Rv1679 | fadE16 | acyl-CoA dehydrogenase |
| Rv1934c | fadE17 | acyl-CoA dehydrogenase |
| Rv1933c | fadE18 | acyl-CoA dehydrogenase |
| Rv2500c | fadE19 | acyl-CoA dehydrogenase (aka $m m g C$ ) |
| Rv2724c | fadE20 | acyl-CoA dehydrogenase |
| Rv2789c | fadE21 | acyl-CoA dehydrogenase |
| Rv3061c | fadE22 | acyl-CoA dehydrogenase |
| Rv3140 | fadE23 | acyl-CoA dehydrogenase |
| Rv3139 | fadE24 | acyl-CoA dehydrogenase |
| Rv3274c | fadE25 | acyl-CoA dehydrogenase |
| Rv3504 | fadE26 | acyl-CoA dehydrogenase |
| Rv3505 | fadE27 | acyl-CoA dehydrogenase |
| Rv3544c | fadE28 | acyl-CoA dehydrogenase |


| Rv3543c | fadE29 | acyl-CoA dehydrogenase |
| :---: | :---: | :---: |
| Rv3560c | fadE30 | acyl-CoA dehydrogenase |
| Rv3562 | fadE31 | acyl-CoA dehydrogenase |
| Rv3563 | fadE32 | acyl-CoA dehydrogenase |
| Rv3564 | fadE33 | acyl-CoA dehydrogenase |
| Rv3573c | fadE34 | acyl-CoA dehydrogenase |
| Rv3797 | fadE35 | acyl-CoA dehydrogenase |
| Rv3761c | fadE36 | acyl-CoA dehydrogenase |
| Rv1175c | fadH | 2,4-Dienoyl-CoA Reductase |
| Rv0855 | far | fatty acyl-CoA racemase |
| Rv1143 | mcr | $\alpha$-methyl acyl-CoA racemase |
| Rv1492 | mutA | methylmalonyl-CoA mutase, $\beta$ subunit |
| Rv1493 | mutB | methylmalonyl-CoA mutase, $\alpha$ subunit |
| Rv2504c | scoA | 3-oxo acid:CoA transferase, $\alpha$ subunit |
| Rv2503c | $s c o B$ | 3-oxo acid:CoA transferase, $\beta$ subunit |
| Rv1136 | - | probable carnitine racemase |
| Rv1683 | - | possible acyl-CoA synthase |
| 4. Phosphorous compounds |  |  |
| Rv2368c | phoH | ATP-binding pho regulon component |
| Rv1095 | phoH2 | PhoH-like protein |
| Rv3628 | ppa | probable inorganic pyrophosphatase |
| Rv2984 | ppk | polyphosphate kinase |
| B. Energy metabolism |  |  |
| 1. Glycolysis |  |  |
| Rv1023 | eno | enolase |
| Rv0363c | fba | fructose bisphosphate aldolase |
| Rv1436 | gap | glyceraldehyde 3-phosphate dehydrogenase |
| Rv0489 | gpm | phosphoglycerate mutase I |
| Rv3010c | pfkA | phosphofructokinase I |
| Rv2029c | pfkB | phosphofructokinase II |
| Rv0946c | pgi | glucose-6-phosphate isomerase |
| Rv1437 | pgk | phosphoglycerate kinase |
| Rv1617 | pykA | pyruvate kinase |
| Rv1438 | tpi | triosephosphate isomerase |
| Rv2419c | - | putative phosphoglycerate mutase |
| Rv3837c | - | putative phosphoglycerate mutase |
| 2. Pyruvate dehydrogenase |  |  |
| Rv2241 | aceE | pyruvate dehydrogenase E1 component |
| Rv3303c | IpdA | dihydrolipoamide dehydrogenase |
| Rv2497c | pdhA | pyruvate dehydrogenase E1 component $\alpha$ subunit |
| Rv2496c | pdhB | pyruvate dehydrogenase E1 component $\beta$ subunit |
| Rv2495c | pdhC | dihydrolipoamide acetyltransferase |
| Rv0462 | - | probable dihydrolipoamide dehydrogenase |
| 3. TCA cycle |  |  |
| Rv1475c | $a c n$ | aconitate hydratase |
| Rv0889c | citA | citrate synthase 2 |
| Rv2498c | cite | citrate lyase $\beta$ chain |
| Rv1098c | fum | fumarase |
| Rv1131 | gltA1 | citrate synthase 3 |
| Rv0896 | gltA2 | citrate synthase 1 |
| Rv3339c | icd1 | isocitrate dehydrogenase |
| Rv0066c | icd2 | isocitrate dehydrogenase |
| Rv0794c | $1 p d B$ | dihydrolipoamide dehydrogenase |
| Rv1240 | mdh | malate dehydrogenase |
| Rv2967c | pca | pyruvate carboxylase |
| Rv3318 | sdh $A$ | succinate dehydrogenase A |
| Rv3319 | sdhB | succinate dehydrogenase $B$ |
| Rv3316 | sdhC | succinate dehydrogenase C subunit |
| Rv3317 | $s d h D$ | succinate dehydrogenase $D$ subunit |
| Rv1248c | sucA | 2-oxoglutarate dehydrogenase |
| Rv2215 | sucB | dihydrolipoamide succinyltransferase |
| Rv0951 | succ | succinyl-CoA synthase $\beta$ chain |
| Rv0952 | sucD | succinyl-CoA synthase $\alpha$ chain |
| 4. Glyoxylate bypass |  |  |
| Rv0467 | aceA | isocitrate lyase |
| Rv1915 | aceAa | isocitrate lyase, $\alpha$ module |
| Rv1916 | $a c e A b$ | isocitrate lyase, $\beta$ module |
| Rv1837c | glcB | malate synthase |
| Rv3323c | gphA | phosphoglycolate phosphatase |
| 5. Pentose phosphate pathway |  |  |
| Rv1445c | dev B | glucose-6-phosphate 1-dehydrogenase |
| Rv1844c | gnd | 6-phosphogluconate dehydrogenase (Gram -) |
| Rv1122 | gnd2 | 6 -phosphogluconate dehydrogenase (Gram +) |
| Rv1446c | opcA | unknown function, may aid G6PDH |


| Rv2436 | rbsK | ribokinase |
| :---: | :---: | :---: |
| Rv1408 | rpe | ribulose-phosphate 3-epimerase |
| Rv2465c | rpi | phosphopentose isomerase |
| Rv1448c | tal | transaldolase |
| Rv1449c | tkt | transketolase |
| Rv1121 | zwf | glucose-6-phosphate 1-dehydrogenase |
| Rv1447c | zwf2 | glucose-6-phosphate 1-dehydrogenase |
| 6. Respiration a. aerobic |  |  |
| Rv0527 | $\operatorname{ccs} A$ | cytochrome $c$-type biogenesis protein |
| Rv0529 | $\operatorname{ccs} B$ | cytochrome $c$-type biogenesis protein |
| Rv1451 | ctaB | cytochrome $c$ oxidase assembly factor |
| Rv2200c | ctaC | cytochrome $c$ oxidase chain II |
| Rv3043c | ctaD | cytochrome $c$ oxidase polypeptide I |
| Rv2193 | ctaE | cytochrome $c$ oxidase polypeptide III |
| Rv1542c | glbN | hemoglobin-like, oxygen carrier |
| Rv2470 | glbO | hemoglobin-like, oxygen carrier |
| Rv2249c | glpD1 | glycerol-3-phosphate dehydrogenase |
| Rv3302c | glpD2 | glycerol-3-phosphate dehydrogenase |
| Rv0694 | IIdD1 | L-lactate dehydrogenase (cytochrome) |
| Rv1872c | IIdD2 | L-lactate dehydrogenase |
| Rv1854c | ndh | probable NADH dehydrogenase |
| Rv3145 | nuoA | NADH dehydrogenase chain A |
| Rv3146 | nuob | NADH dehydrogenase chain B |
| Rv3147 | nuoc | NADH dehydrogenase chain C |
| Rv3148 | nuod | NADH dehydrogenase chain D |
| Rv3149 | nuoE | NADH dehydrogenase chain E |
| Rv3150 | nuoF | NADH dehydrogenase chain F |
| Rv3151 | nuoG | NADH dehydrogenase chain $G$ |
| Rv3152 | nuoH | NADH dehydrogenase chain H |
| Rv3153 | nuol | NADH dehydrogenase chain I |
| Rv3154 | nuoJ | NADH dehydrogenase chain $J$ |
| Rv3155 | nuok | NADH dehydrogenase chain K |
| Rv3156 | nuol | NADH dehydrogenase chain L |
| Rv3157 | nuoM | NADH dehydrogenase chain M |
| Rv3158 | nuoN | NADH dehydrogenase chain N |
| Rv2195 | qcrA | Rieske iron-sulphur component of ubiQ-cytB reductase |
| Rv2196 | $q c r B$ | cytochrome $\beta$ component of $u b i Q$ cytB reductase |
| Rv2194 | qcrC | cytochrome $b / c$ component of ubiQ-cytB reductase |
| b. anaerobic |  |  |
| Rv2392 | cysH | 3'-phosphoadenylylsulfate (PAPS) reductase |
| Rv2899c | $f d h D$ | affects formate dehydrogenase-N |
| Rv2900c | fdhF | molybdopterin-containing oxidoreductase |
| Rv1552 | frdA | fumarate reductase flavoprotein subunit |
| Rv1553 | $f r d B$ | fumarate reductase iron sulphur protein |
| Rv1554 | frdC | fumarate reductase 15 kD anchor protein |
| Rv1555 | frdD | fumarate reductase 13kD anchor protein |
| Rv1161 | narG | nitrate reductase $\alpha$ subunit |
| Rv1162 | narH | nitrate reductase $\beta$ chain |
| Rv1164 | narl | nitrate reductase $\gamma$ chain |
| Rv1163 | narJ | nitrate reductase $\delta$ chain |
| Rv1736c | narX | fused nitrate reductase |
| Rv2391 | nirA | probable nitrite reductase/sulphite reductase |
| Rv0252 | nirB | nitrite reductase flavoprotein |
| Rv0253 | nirD | probable nitrite reductase small subunit |
| c. Electron transport |  |  |
| Rv0409 | ackA | acetate kinase |
| Rv1623c | $a p p C$ | cytochrome bd-II oxidase subunit I |
| Rv1622c | cydB | cytochrome $d$ ubiquinol oxidase subunit II |
| Rv1620c | cydC | ABC transporter |
| Rv1621c | cydD | ABC transporter |
| Rv2007c | $f d x A$ | ferredoxin |
| Rv3554 | $f d x B$ | ferredoxin |
| Rv1177 | $f d x C$ | ferredoxin $4 \mathrm{Fe}-4 \mathrm{~S}$ |
| Rv3503c | $f d x D$ | probable ferredoxin |
| Rv3029c | fix $A$ | electron transfer flavoprotein $\beta$ subunit |
| Rv3028c | fixB | electron transfer flavoprotein $\alpha$ subunit |
| Rv3106 | fprA | adrenodoxin and NADPH ferredoxin reductase |
| Rv0886 | fprB | ferredoxin, ferredoxin-NADP reductase |
| Rv3251c | rubA | rubredoxin A |

Rv3250c rubB rubredoxin B
7. Miscellaneous oxidoreductases and oxygenases 171

| 8. ATP-proton motive force |  |  |
| :--- | :--- | :--- |
| Rv1308 | atpA | ATP synthase $\alpha$ chain |
| Rv1304 | atpB | ATP synthase $\alpha$ chain |
| Rv1311 | atpC | ATP synthase $\epsilon$ chain |
| Rv1310 | atpD | ATP synthase $\beta$ chain |
| Rv1305 | atpE | ATP synthase chain |
| Rv1306 | atpF | ATP synthase b chain |
| Rv1309 | atpG | ATP synthase $\gamma$ chain |
| Rv1307 | atpH | ATP synthase $\delta$ chain |


| C. Central intermediary metabolism <br> 1. General |  |  |
| :--- | :--- | :--- |
| Rv2589 | gabT |  |
| Rv3432c | gadB | 4-aminobutyrate aminotransferase <br> glutamate decarboxylase <br> Rv1832 |
| gcvB | glycine decarboxylase |  |
| Rv1826 | gcvH | glycine cleavage system H protein <br> Rv2211c |
| gcvT | Tprotein of glycine cleavage <br> system |  |
| Rv1213 | glgC | glucose-1-phosphate adenylyl- <br> transferase |
| Rv3842c | glpQ1 | glycerophosphoryl diester phos- <br> phodiesterase |
| Rv0317c | glpQ2 | glycerophosphoryl diester phos- <br> phodiesterase |
| Rv3566c | nhoA | N-hydroxyarylamine o-acetyltrans- <br> ferase <br> pyridine transhydrogenase sub- <br> unit $\alpha 1$ |
| Rv0155 | pntAA | pyridine transhydrogenase sub- <br> unit $\alpha 2$ |
| Rv0156 | pntAB |  |
| Ryridine transhydrogenase |  |  |
| Rubunit $\beta$ |  |  |


| 3. Sugar nucleotides |  |  |
| :---: | :---: | :---: |
| Rv1512 | epiA | nucleotide sugar epimerase |
| Rv3784 | epiB | probable UDP-galactose 4epimerase |
| Rv1511 | $g m d A$ | GDP-mannose 4,6 dehydratase |
| Rv0334 | $r m / A$ | glucose-1-phosphate thymidyltransferase |
| Rv3264c | rmIA2 | glucose-1-phosphate thymidyltransferase |
| Rv3464 | $r m / B$ | dTDP-glucose 4,6-dehydratase |
| Rv3634c | rmIB2 | dTDP-glucose 4,6-dehydratase |
| Rv3468c | rmiB3 | dTDP-glucose 4,6-dehydratase |
| Rv3465 | rmiC | dTDP-4-dehydrorhamnose 3,5-epimerase |
| Rv3266c | $r m I D$ | dTDP-4-dehydrorhamnose reductase |
| Rv0322 | $u d g A$ | UDP-glucose dehydrogenase/GDP-mannose 6dehydrogenase |
| Rv3265c | wbbL | dTDP-rhamnosyl transferase |
| Rv1525 | wbbl2 | dTDP-rhamnosyl transferase |
| Rv3400 | - | probable $\beta$-phosphoglucomutase |

4. Amino sugars
Rv3436c glmS glucosamine-fructose-6-

| 5. Sulphur metabolism |  |  |
| :--- | :--- | :--- |
| Rv0711 | atsA | arylsulfatase |
| Rv3299c | ats $B$ | proable arylsulfatase |
| Rv0663 | ats $D$ | proable arylsulfatase |
| Rv3077 | atsF | proable arylsulfatase |
| Rv0296c | atsG | proable arylsulfatase |
| Rv3796 | atsH | proable arylsulfatase |
| Rv1285 | cysD | ATP:sulphurylase subunit 2 |
| Rv1286 | cysN | ATP:sulphurylase subunit 1 |
| Rv2131c | cysQ | homologue of M.leprae cys $Q$ |
| Rv3248c | sahH | adenosylhomocysteinase |
| Rv3283 | sseA | thiosulfate sulfurtransferase |
| Rv2291 | sseB | thiosulfate sulfurtransferase |
| Rv3118 | sseC | thiosulfate sulfurtransferase |
| Rv0814c | sseC2 | thiosulfate sulfurtransferase |
| Rv3762c | - | probable alkyl sulfatase |


| D. Amino acid biosynthesis |  |  |
| :--- | :--- | :--- |
| 1. Glutamate family |  |  |
| Rv1654 | argB | acetylglutamate kinase |
| Rv1652 | $\operatorname{argC}$ | N-acetyl- - -glutamyl-phosphate |
|  |  | reductase |
| Rv1655 | $\operatorname{argD}$ | acetylornithine aminotransferase |
| Rv1656 | $\operatorname{argF}$ | ornithine carbamoyltransferase |
| Rv1658 | $\operatorname{argG}$ | arginosuccinate synthase |
| Rv1659 | argH | arginosuccinate lyase |
| Rv1653 | argJ | glutamate N-acetyltransferase |
| Rv2220 | glnA1 | glutamine synthase class I |
| Rv2222c | glnA2 | glutamine synthase class II |

Rv1878 glnA3
Rv2860c $g \ln A 4$ Rv2918c glnD Rv2221c glnE
Rv3859c gltB

Rv3858c gltD
Rv3704c gshA
$\begin{array}{ll}\text { Rv2427c } & \text { proA } \\ \text { Rv2439c } & \text { proB }\end{array}$
Rv0500 proC
Rv3708c asd aspartate semialdehyde dehydro-

## genase

aspartokinase
asparagine synthase $B$
aspartate aminotransferase
aspartate aminotransferase
dihydrodipicolinate synthase
dihydrodipicolinate reductase
succinyl-diaminopimelate desuc-
cinylase
ArgE/DapE/Acy1/Cpg2/yscS ArgE/D
family
diaminopimelate epimerase
diaminopimelate decarboxylase
homoserine $o$-acetyltransferase
cystathionine $\gamma$-synthase
cystathionine $\beta$-lyase
5-methyltetrahydropteroyltrigluta-
mate-homocysteine methyltrans-
ferase
5-methyltetrahydrofolate-homo-
cysteine methyltransferase
$S$-adenosylmethionine synthase
$S$-adenosylmethionine synthase
o-succinylhomoserine sulfhy-
drylase
homoserine dehydrogenase
homoserine kinase
homoserine synthase
thiosulfate sulfurtransferase thiosulfate sulfurtransferase serine acetyltransferase uroporphyrin-III c-methyltrans ferase
multifunctional enzyme, siroheme synthase
cysteine synthase A
cysteine synthase $B$
cystathionine $\beta$-synthase
putative cysteine synthase
serine hydroxymethyltransferase
serine hydroxymethyltransferase
D-3-phosphoglycerate dehydro-
genase
probable phosphoserine phos-
phatase
C-term similar to phosphoserine
phosphatase
phosphatase
phosphoserine aminotransferase
4. Aromatic amino acid family

Rv3227 aroA 3-phosphoshikimate
1-carboxyvinyl transferase
Rv2538c aroB 3-dehydroquinate synthase
Rv2537c aroD 3-dehydroquinate dehydratase
Rv2552c aroE shikimate 5-dehydrogenas
$\begin{array}{lll}\text { Rv2552c } & \text { aroE } & \text { shikimate } 5 \text {-dehydrogen } \\ \text { Rv2540c } & \text { aroF } & \text { chorismate synthase }\end{array}$
Rv2540c aroF chorismate synthas
Rv2178c aroG
$\begin{array}{lll}\text { Rv2178c } & \text { aroG } & \text { DAHP synthase } \\ \text { Rv2539c } & \text { aroK } & \text { shikimate kinase I }\end{array}$
Rv3838c pheA prephenate dehydratase
Rv1613 trpA tryptophan synthase $\alpha$ chain
$\begin{array}{lll}\text { Rv1612 } & \operatorname{trpB} & \text { tryptophan synthase } \beta \text { chain } \\ \text { Rv1611 } & \operatorname{trpC} & \text { indole-3-glycerol phosphate }\end{array}$
indole-3-glycerol phosphate
synthase
anthranilate phosphoribosyltrans-
ferase
anthranilate synthase
component I
anthranilate synthase
component I
prephenate dehydrogenase
5. Histidine

Rv1603 hisA
phosphoribosylformimino-5aminoimidazole carboxamide ribonucleotide isomerase imidazole glycerol-phosphate dehydratase
dehydratase
histidinol-phosphate aminotransferase
histidinol-phosphate aminotransferase
histidinol dehydrogenase




 CO



| Rv0823c | - | family) transcriptional regulator (NifR3/Smm1 family) | Rv3160cRv3167c |  | putative transcriptional regulator putative transcriptional regulator | Rv0018c | ppp |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | putative phosphoprotein phos- |
|  |  |  | Rv3173c | - | transcriptional regulator |  |  | phatase |
| Rv0827c | - | transcriptional regulator (ArsR family) | Rv3183 |  | (TetR/AcrR family) putative transcriptional regulator | Rv2234 | $p t p A$ | low molecular weight protein-tyro-sine-phosphatase |
| Rv0890c | - | transcriptional regulator (LuxR/UhpA family) | Rv3208 | - | transcriptional regulator (TetR/AcrR family) | Rv0153c | - | putative protein-tyrosine-phosphatase |
| Rv0891c |  | putative transcriptional regulator | Rv3249c | - | transcriptional regulator |  |  |  |
| Rv0894 <br> Rv1019 | - | putative transcriptional regulator |  |  | (TetR/AcrR family) |  |  |  |
|  | - | transcriptional regulator (TetR/AcrR family) | Rv3291c | - | transcriptional regulator (Lrp/AsnC family) | A. Synthesis and modification of macromolecules <br> 1. Ribosomal protein synthesis and modification |  |  |
| Rv1049 | - | transcriptional regulator (MarR family) | Rv3295 | - | transcriptional regulator (TetR/AcrR family) | Rv3420c | riml | ribosomal protein S18 acetyl transferase |
| Rv1129c | - | transcriptional regulator (PbsX/Xre family) | Rv3334 | - | transcriptional regulator (MerR family) | Rv0995 Rv0641 | $\begin{aligned} & \text { rimJ } \\ & \text { rpIA } \end{aligned}$ | acetylation of 30S S5 subunit 50 S ribosomal protein L1 |
| Rv1151c |  | putative transcriptional regulator | Rv3405c |  | putative transcriptional regulator | Rv0704 | $r p / B$ | 50 S ribosomal protein L2 |
| Rv1152 | - | transcriptional regulator (GntR | Rv35557c |  | putative transcriptional regulator | Rv0701 | $r p / C$ | 50 S ribosomal protein L3 |
|  |  | family) |  | - | transcriptional regulator | Rv0702 | rp/D | 50 S ribosomal protein L4 |
| Rv1167c |  | putative transcriptional regulator |  |  | (TetR/AcrR family) | Rv0716 | rple | 50 S ribosomal protein L5 |
| Rv1219c | - | putative transcriptional regulator | Rv3574 |  | transcriptional regulator | Rv0719 | rplF | 50 S ribosomal protein L6 |
| Rv1255c | - | transcriptional regulator |  |  | (TetR/AcrR family) | Rv0056 | rp/l | 50 S ribosomal protein L9 |
|  |  | (TetR/AcrR family) | Rv3575c | - | transcriptional regulator (Lacl | Rv0651 | rplJ | 50S ribosomal protein L10 |
| Rv1332 | - | putative transcriptional regulator |  |  | family) | Rv0640 | rp/k | 50S ribosomal protein L11 |
| Rv1353c | - | transcriptional regulator | Rv3583c | - | putative transcriptional regulator | Rv0652 | rp/l | 50S ribosomal protein L7/L12 |
|  |  | (TetR/AcrR family) | Rv3676 | - | transcriptional regulator (Crp/Fnr | Rv3443c | rp/M | 50S ribosomal protein L13 |
| Rv1358 | - | transcriptional regulator | Rv3678c | - | family) | Rv0714 | $r \mathrm{p} / \mathrm{N}$ | 50S ribosomal protein L14 |
|  |  | (LuxR/UhpA family) |  |  | transcriptional regulator (LysR | Rv0723 | rplo | 50S ribosomal protein L15 |
| Rv1359 |  | putative transcriptional regulator |  |  | family) | Rv0708 | rplP | 50S ribosomal protein L16 |
| Rv1395 | - | transcriptional regulator | Rv3736 | - | transcriptional regulator | Rv3456c | rplQ | 50S ribosomal protein L17 |
|  |  | (AraC/XylS family) |  |  | (AraC/XyIS family) transcriptional regulator (ArsR family) | Rv0720 | rplR | 50S ribosomal protein L18 |
| Rv1404 | - | transcriptional regulator (MarR family) | Rv3744 | - |  | Rv2904c <br> Rv1643 | $\underset{r p / T}{\text { rp/S }}$ | 50 ribosomal protein L19 50 ribosomal protein L20 |
| Rv1423 | - | putative transcriptional regulator | Rv3830c | - | transcriptional regulator (TetR/AcrR family) | Rv2442c | rplu | 50S ribosomal protein L21 |
| Rv1460 | - | putative transcriptional regulator |  |  |  | Rv0706 | $r p / V$ | 50 S ribosomal protein L22 |
| Rv1474c | - | transcriptional regulator (TetR/AcrR family) | Rv3833 | - | transcriptional regulator (AraC/XylS family) | $\begin{aligned} & \text { Rv0703 } \\ & \text { Rv0715 } \end{aligned}$ | $\begin{aligned} & \text { rpIW } \\ & \text { rpIX } \end{aligned}$ | 50 S ribosomal protein L23 50S ribosomal protein L24 |
| Rv1534 | - | transcriptional regulator | Rv3840 |  | putative transcriptional regulator | Rv1015c | $r p / Y$ | 50S ribosomal protein L25 |
|  |  | (TetR/AcrR family) | Rv3855 | - | putative transcriptional regulator | Rv2441c | rpmA | 50S ribosomal protein L27 |
| Rv1556 | - | putative transcriptional regulator |  |  |  | Rv0105c | rpmB | 50S ribosomal protein L28 |
| Rv1674c | - | putative transcriptional regulator | 2. Two co | mponent | stems | Rv2058c | rpmB2 | 50S ribosomal protein L28 |
| Rv1675c | - | putative transcriptional regulator | Rv1028c | $k d p D$ | sensor histidine kinase | Rv0709 | rpmC | 50S ribosomal protein L29 |
| Rv1719 | - | transcriptional regulator (ICIR | Rv1027c | kdpE | two-component response | Rv0722 | rpmD | 50 S ribosomal protein L30 |
|  |  | family) | Rv3246c | $m t r A$ | regulator | Rv1298 | rpmE | 50S ribosomal protein L31 |
| Rv1773c | - | transcriptional regulator (IcIR family) |  |  | two-component response regulator | Rv2057c <br> Rv3924c | rpmG rpmH | 50S ribosomal protein L33 50S ribosomal protein L34 |
| Rv1776c | - | putative transcriptional regulator | Rv3245c | $m t r B$ | sensor histidine kinase | Rv1642 | rpml | 50S ribosomal protein L35 |
| Rv1816 | - | putative transcriptional regulator | Rv0844c | narL | two-component response | Rv3461c | rpmJ | 50S ribosomal protein L36 |
| Rv1846c | - | putative transcriptional regulator |  |  | regulator | Rv1630 | $r p s A$ | 30 S ribosomal protein S1 |
| Rv1931c | - | transcriptional regulator | Rv0757 | phoP | two-component response | Rv2890c | $r p s B$ | 30 S ribosomal protein S2 |
|  |  | (AraC/XylS family) |  |  | regulator | Rv0707 | rpsC | 30 ribosomal protein S3 |
| Rv1956 | - | putative transcriptional regulator | Rv0758 | phoR | sensor histidine kinase | Rv3458c | $r p s D$ | 30 S ribosomal protein S4 |
| Rv1963c | - | putative transcriptional regulator | Rv0491 | regX3 | two-component response | Rv0721 | rpsE | 30 Sr ribosomal protein S5 |
| Rv1985c | - | transcriptional regulator (LysR |  |  | regulator | Rv0053 | rpsF | 30 S ribosomal protein S6 |
|  |  | family) | Rv0490 | senX3 | sensor histidine kinase | Rv0683 | $r p s G$ | 30 S ribosomal protein S7 |
| Rv1990c | - | putative transcriptional regulator | Rv0602c | tcrA | two-component response | Rv0718 | rpsH | 30S ribosomal protein S8 |
| Rv1994c | - | transcriptional regulator (MerR |  |  | regulator | Rv3442c | rps/ | $30 \mathrm{Sribosomal} \mathrm{protein} \mathrm{S9}$ |
|  |  | family) | Rv0260c | - | two-component response | Rv0700 | rps J | 30S ribosomal protein S10 |
| Rv2017 | - | putative transcriptional regulator |  |  | regulator | Rv3459c | rpsK | 30S ribosomal protein S11 |
|  |  | (PbsX/Xre family) | Rv0600c | - | sensor histidine kinase | Rv0682 | rpsL | 30S ribosomal protein S12 |
| Rv2021c | - | putative transcriptional regulator | Rv0601c |  | sensor histidine kinase | Rv3460c | rpsM | 30 S ribosomal protein S13 |
| Rv2034 | - | transcriptional regulator (ArsR | Rv0818 | - | two-component response | Rv0717 | rps $N$ | 30 S ribosomal protein S14 |
|  |  | family) |  |  | regulator | Rv2056c | rpsN2 | 30 S ribosomal protein S14 |
| Rv2175c - |  | putative transcriptional regulator | Rv0845 |  | sensor histidine kinase | Rv2785c | rpsO | 30 S ribosomal protein S15 |
| Rv2250c | - | putative transcriptional regulator | Rv0902c | - | sensor histidine kinase | Rv2909c | $r p s P$ | 30S ribosomal protein S16 |
| Rv2258c |  | putative transcriptional regulator | Rv0903c | - | two-component response | Rv0710 | $r p s Q$ | 30S ribosomal protein S17 |
| Rv2282c |  | transcriptional regulator (LysR |  |  | regulator | Rv0055 | rpsR | 30S ribosomal protein S18 |
|  |  | family) | Rv0981 | - | two-component response | Rv2055c | rpsR2 | 30S ribosomal protein S18 |
| Rv2308 |  | putative transcriptional regulator |  |  | regulator | Rv0705 | rpsS | 30 S ribosomal protein S19 |
| Rv2324 | - | transcriptional regulator | Rv0982 |  | sensor histidine kinase | Rv2412 | rps $T$ | 30 S ribosomal protein S20 |
|  |  | (Lrp/AsnC family) | Rv1032c |  | sensor histidine kinase | Rv3241c |  | member of S30AE ribosomal |
| Rv2358 | - | transcriptional regulator (ArsR family) | Rv1033c | - | two-component response regulator |  |  | protein family |
| Rv2488c | - | transcriptional regulator | Rv1626 | - | two-component response | 2. Ribosome modification and maturation |  |  |
|  |  | (LuxR/UhpA family) |  |  | regulator | Rv1010 | ksgA | 16S rRNA dimethyltransferase |
| Rv2506 | - | transcriptional regulator | Rv2027c | - | sensor histidine kinase | Rv2838c | rbfA | ribosome-binding factor A |
|  |  | (TetR/AcrR family) | Rv2884 | - | two-component response | Rv2907c | rimM | 16 S rRNA processing protein |
|  | - | putative transcriptional regulator |  |  | regulator |  |  |  |
| Rv2640c | - | transcriptional regulator (ArsR | Rv3132c | - | sensor histidine kinase | 3. Aminoa | cyl tRNA | synthases and their modification |
|  |  | family) | Rv3133c | - | two-component response | Rv2555c | alas | alanyl-tRNA synthase |
| Rv2642 | - | transcriptional regulator (ArsR |  |  | regulator | Rv1292 | argS | arginyl-tRNA synthase |
|  |  | family) | Rv3143 | - | putative sensory transduction | Rv2572c | aspS | aspartyl-tRNA synthase |
| Rv2669 <br> Rv2745c | - | putative transcriptional regulator |  |  | protein | Rv3580c | cysS | cysteinyl-tRNA synthase |
|  | - | - $\quad$ putative transcriptional regulator | Rv3220cRv3764c | - | sensor histidine kinase | Rv2130c | cysS2 | cysteinyl-tRNA synthase |
| Rv2779c | - | transcriptional regulator |  | - | sensor histidine kinase | Rv1406 | fmt | methionyl-tRNA formyltransferase |
|  |  | (Lrp/AsnC family) transcriptional regulator (MarR family) | Rv3765c | - | two-component response regulator | Rv3011c | gatA | glu-tRNA-gln amidotransferase, |
| Rv2887 | - |  |  |  |  |  |  | subunit B |
|  |  |  |  |  |  | Rv3009c | gatB | glu-tRNA-gln amidotransferase, |
| Rv2912c | - | transcriptional regulator (TetR/AcrR family) transcriptional regulator (IcIR family) | 3. Serine-threonine protein kinases and phosphoprotein |  |  | Rv3012c | gatC | subunit A glu-tRNA-gln amidotransferase, |
| Rv2989 | - |  | phosphatasesRvo015c |  | serine-threonine protein kinase |  |  | guturnes subunit C |
|  |  |  | Rv0014c | $p k n B$ | serine-threonine protein kinase | Rv2992c | glts | glutamyl-tRNA synthase |
| Rv3050c |  | family) <br> putative transcriptional regulator putative transcriptional regulator | Rv0931c | $p k n D$ | serine-threonine protein kinase | Rv2357c | glys | glycyl-tRNA synthase |
| Rv3055 | - |  | Rv1743 | pknE | serine-threonine protein kinase | Rv2580c | hisS | histidyl-tRNA synthase |
| Rv3058c | - | putative transcriptional regulator | Rv1746 | $p k n F$ | serine-threonine protein kinase | Rv1536 | ileS | isoleucyl-tRNA synthase |
| Rv3060c | - | transcriptional regulator (GntR | Rv0410c | $p k n G$ | serine-threonine protein kinase | Rv0041 | leus | leucyl-tRNA synthase |
|  |  | family) | Rv1266c | pknH | serine-threonine protein kinase | Rv3598c | lysS | lysyl-tRNA synthase |
| Rv3066Rv3095Rv3124 |  | putative transcriptional regulator | Rv2914c | pknl | serine-threonine protein kinase | Rv1640c | lysX | C-term lysyl-tRNA synthase methionyl-tRNA synthase phenylalanyl-tRNA synthase $\alpha$ subunit |
|  | - | putative transcriptional regulator | Rv2088 | pknJ | serine-threonine protein kinase | Rv1007c | metS |  |
|  |  | transcriptional regulator | Rv3080c | pknK | serine-threonine protein kinase | Rv1649 | pheS |  |
|  |  | (AfsR/Dndl/RedD family) | Rv2176 | pknL | serine-threonine protein kinase, |  |  |  |


| Rv1650 | pheT | phenylalanyl-tRNA synthase $\beta$ <br> subunit |
| :--- | :--- | :--- |
| Rv2845c | proS | prolyl-tRNA synthase |
| Rv3834c | serS | seryl-tRNA synthase |
| Rv2614c | thrS | threonyl-tRNA synthase |
| Rv2906c | trmD | tRNA (guanine-N1)-methyltrans- |
|  |  | ferase |
| Rv3336c | trpS | tryptophanyl tRNA synthase |
| Rv1689 | tyrS | tyrosyl-tRNA synthase |
| Rv2448c | valS | valyl-tRNA synthase |
|  |  |  |
| 4. Nucleoproteins |  |  |
| Rv1407 | fmu | similar to Fmu protein |
| Rv3852 | hns | HU-histone protein |
| Rv2986c | hupB | DNA-binding protein II |
| Rv1388 | mlHF | integration host factor |

5. DNA replication, repair, recombination and restriction/modification

| Rv1317c | $\operatorname{alkA}$ | DNA-3-methyladenine glycosi- <br> dase II |
| :--- | :--- | :--- |
| Rv2836c | $\operatorname{dinF}$ | DNA-damage-inducible protein F |
| Rv1329c $\operatorname{dinG}$ | probable ATP-dependent helicase |  |
| Rv3056 | $\operatorname{dinP}$ | DNA-damage-inducible protein |
| Rv1537 | $\operatorname{din} X$ | probable DNA-damage-inducible <br> protein <br> chromosomal replication initiator |
| Rv0001 | $\operatorname{dnaA}$ | protein |

Rv0058 dnaB DNA helicase (contains intein)
$\begin{array}{lll}\text { Rv1547 } & \text { dnaE1 } & \text { DNA polymerase III, } \alpha \text { subunit } \\ \text { Rv3370c } & \text { dnaE2 } & \text { DNA polymerase III } \alpha \text { chain }\end{array}$ Rv2343c dnaG DNA primase
Rv0002 dnaN DNA polymerase III, $\beta$ subunit Rv3711c dnaQ DNA polymerase III $\epsilon$ chain Rv3721c dnaZX DNA polymerase III, $\gamma(\mathrm{dnaZ}$ ) and Rv2924c fpg $\begin{array}{ll}\tau \text { (dnaX) } \\ \text { formam } \\ \text { sylase }\end{array}$
Rv0006 gyrA DNA gyrase subunit A
$\begin{array}{lll}\text { Rv0005 } & \text { gyrB } & \text { DNA gyrase subunit B } \\ \text { Rv2092c } & \text { he/Y } & \text { probable helicase, Ski2 subfamily }\end{array}$
Rv2101 helZ probable helicase, Snf2/Rad54 family
Rv2756c hsdM type I restriction/modification sys-
Rv2755c hsdS' type I restriction/modification sys
Rv3296 Ihr ATP-dependent helicase
Rv3014c ligA DNA ligase
$\begin{array}{lll}\text { Rv3062 } & \text { ligB } & \text { DNA ligase } \\ \text { Rv3731 } & \text { ligC } & \text { probable DNA ligase }\end{array}$
Rv1020 mfd transcription-repair coupling factor
Rv2528c mrr restriction system protein
$\begin{array}{lll}\text { Rv2985 } & \text { mutT1 } & \text { MutT homologue } \\ \text { Rv1160 } & \text { mutT2 } & \text { MutT homologue }\end{array}$
$\begin{array}{lll}\text { Rv1160 } & \text { mutT2 } & \text { MutT homologue } \\ \text { Rv0413 } & \text { mutT3 } & \text { MutT homologue }\end{array}$
Rv3589 mutY probable DNA glycosylase
Rv3297 nei probable endonuclease VIII
$\begin{array}{lll}\text { Rv3674c } & \text { nth } & \text { probable endonuclease III } \\ \text { Rv1316c } & \text { ogt } & \text { methylated-DNA-protein-cysteine }\end{array}$ Rv1629 polA methyltransferase
Rv1402 priA putative primosomal protein $n^{\prime}$ (replication factor Y )
Rv3585 radA probable DNA repair RadA homo- logue
Rv2737c recA recombinase (contains intein) Rv0630c recB exodeoxyribonuclease V Rv0631c recC exodeoxyribonuclease V Rv0629c recD exodeoxyribonuclease V Rv0003 recF DNA replication and SOS inducDNA replication and SOS ind
tion
ATP-dependent DNA helicase $\begin{array}{lll}\text { Rv2973c } & \text { recG } & \text { ATP-dependent DNA helicase } \\ \text { Rv1696 } & \text { recN } & \text { recombination and DNA repair }\end{array}$ Rv3715c recR RecBC-Independent process of DNA repair
$\begin{array}{lll}\text { Rv2736c } & \text { recX } & \text { regulatory protein for RecA } \\ \text { Rv2593c } & \text { ruvA } & \text { Holliday junction binding protein, }\end{array}$ DNA helicase

| Rv2592c | ruvB | Holliday junction binding protein |
| :--- | :--- | :--- |
| Rv2594c | ruvC | Holliday junction resolvase, endo- <br> deoxyribonuclease |

Rv0054 ssb single strand binding protein
Rv1210 tagA DNA-3-methyladenine glycosi- dase I
Rv3646c topA DNA topoisomerase Rv2976c ung uracil-DNA glycosylase Rv1638 uvrA excinuclease $A B C$ subunit $A$ Rv1633 uvrB excinuclease ABC subunit B Rv1420 uvrC excinuclease ABC subunit C Rv0949 uvrD DNA-dependent ATPase I and helicase II
Rv3198c uvrD2 putative UvrD
Rv0427c xthA exodeoxyribonuclease III
$\begin{array}{ll}\text { Rv0071 } \\ \text { Rv0861c - } & \text { group II intron maturase } \\ \text { Rvobable DNA helicase }\end{array}$
Rv0944 - possible formamidopyrimidine-
DNA glycosylase
Rv1688 - probable 3-methylpurine DNA glycosylase

| Rv2090 |  | partially similar to DNA polymerase I | 2. DNA Rv0670 | end | endonuclease IV (apurinas |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rv2191 | - | similar to both PolC and UvrC | Rv1108c | xseA | exonuclease VII large subunit |
|  |  | proteins | Rv1107c | xseB | exonuclease VII small subunit |
| Rv2464c | - | probable DNA glycosylase, endonuclease VIII | 3. Proteins, peptides and glycopeptides |  |  |
| Rv3201c | - | probable ATP-dependent DNA helicase | Rv3305c | amiA | probable aminohydrolase |
|  |  |  | Rv3306c | amiB | probable aminohydrolase |
| Rv3202c |  | similar to UvrD proteins | Rv3596c | clp C | ATP-dependent Clp protease |
| Rv3263 |  | probable DNA methylase | Rv2461c | clpP | ATP-dependent Clp protease proteolytic subunit ATP-dependent Clp protease proteolytic subunit |
| Rv3644c | - | similar in N-term to DNA polymerase III | Rv2460c | clpP2 |  |
| 6. Protein translation and modification |  |  | Rv2457c | clpX | ATP-dependent Clp protease ATP-binding subunit CIpX similar to ClpC from M. leprae but shorter |
| Rv0429c | def | polypeptide deformylase | Rv2667 |  |  |
| Rv2534c | efp | elongation factor $P$ |  | clpX' |  |
| Rv2882c | frr | ribosome recycling factor |  |  |  |
| Rv0684 | fusA | elongation factor G | Rv3419c | $g c p$ | glycoprotease |
| Rv0120c | fusA2 | elongation factor G |  | $\begin{aligned} & h f I X \\ & h t r A \end{aligned}$ | GTP-binding protein |
| Rv1080c | greA | transcription elongation factor G |  |  | serine protease |
| Rv3462c | infA | initiation factor IF-1 | Rv1223 <br> Rv2861c | map map' | methionine aminopeptidase |
| Rv2839c | infB | initiation factor IF-2 | $\begin{aligned} & \text { Rv2861c } \\ & \text { Rv0734 } \end{aligned}$ |  | probable methionine aminopepti- |
| Rv1641 | infC | initiation factor IF-3 |  |  | dase |
| Rv0009 | ppiA | peptidyl-prolyl cis-trans isomerase | Rv0319 | $p c p$pepA | pyrrolidone-carboxylate peptidase |
| Rv2582 | ppiB | peptidyl-prolyl cis-trans isomerase | $\begin{aligned} & \text { Rv0125 } \\ & \text { Rv2213 } \end{aligned}$ |  | probable serine protease |
| Rv1299 | prfA | peptide chain release factor 1 |  | $\begin{aligned} & \text { pepA } \\ & \text { pepB } \end{aligned}$ | aminopeptidase A/I |
| Rv3105c | prif | peptide chain release factor 2 | Rv0800 | pepC | aminopeptidase I |
| Rv2889c | tsf | elongation factor EF-Ts |  | pepD | probable aminopeptidase |
| Rv0685 | tuf | elongation factor EF-Tu | Rv2089c | pepE | cytoplasmic peptidase |
|  |  |  | $\begin{aligned} & \text { Rv2535c } \\ & \text { Rv2782c } \end{aligned}$ | $p e p Q$ pepR | cytoplasmic peptidase |
| 7. RNA synthesis, RNA modification and DNA transcription |  |  |  |  | protease/peptidase, M16 family (insulinase) |
| Rv1253 | deaD | ATP-dependent DNA/RNA helicase | Rv2109c Rv2110c | prcA <br> prcB | proteasome $\alpha$-type subunit 1 proteasome $\beta$-type subunit 2 |
| Rv2783c | gps/ | pppGpp synthase and polyribo- | Rv0782 | ptrBa | protease II, $\alpha$ subunit |
| Rv2841c Rv2533c | nusA | transcription termination factor | Rv0724 | sppA | protease IV, signal peptide peptidase |
|  |  | N -utilization substance protein B |  |  |  |
| $\begin{aligned} & \text { Rv2533c } \\ & \text { Rv0639 } \end{aligned}$ | nusG | transcription antitermination | Rv0198c | - | probable zinc metalloprotease |
|  |  | protein | Rv0457c | - | probable peptidase |
| Rv3907c | pcnA | polynucleotide polymerase | Rv0840c | - | probable proline iminopeptidase |
| Rv3232c | pvdS | alternative sigma factor for | Rv0983 |  | probable serine protease |
|  |  | siderophore production | Rv1977 | - | probable zinc metallopeptidase |
| Rv3211 | rhie | probable ATP-dependent | Rv3668c | - | probable alkaline serine protease |
|  |  | RNA helicase | Rv3671c |  |  |
| Rv1297 | rho | transcription termination factor rho | $\begin{aligned} & \text { Rv3883c } \\ & \text { Rv3886c } \end{aligned}$ |  | probable secreted protease protease |
| Rv3457c |  | $\alpha$ subunit of RNA polymerase$\beta$ subunit of RNA polymerase |  |  |  |
| Rv0667 | rpoB |  | 4. Polysaccharides, lipopolysaccharides and phospho- |  |  |
| Rv0668 | rpoc | $\beta^{\prime}$ subunit of RNA polymeraseSigB regulation protein | lipids |  |  |
| Rv1364c | rsbU |  | Rv0062Rv3915 | celA cw/M | cellulase/endoglucanase |
| Rv3287c | rsbW | anti-sigma B factor |  |  | hydrolase |
| Rv2703 | $\operatorname{sig} A$ | RNA polymerase sigma factor (aka MysA, RpoV) | Rv0315 <br> Rv1090 | - | probable $\beta$-1,3-glucanase probable inactivated |
| Rv2710 | sigB | RNA polymerase sigma factor (aka MysB) | Rv1327c | - | cellulase/endoglucanase probable glycosyl hydrolase, $\alpha$ amylase family |
|  |  |  |  |  |  |
| Rv2069 | sigC | ECF subfamily sigma subunit |  |  |  |
| Rv3414c | sig D | ECF subfamily sigma subunit | Rv1333 |  | probable hydrolase |
| Rv1221 | sigE | ECF subfamily sigma subunit | Rv3463 |  | probable neuraminidase |
| Rv3286c | sigF | ECF subfamily sigma subunit | Rv3717 |  | possible N -acetylmuramoyl-L-ala- |
| Rv0182c | $\operatorname{sig} G$ | sigma-70 factors ECF subfamily |  |  | nine amidase |
| Rv3223c | sigh | ECF subfamily sigma subunit |  |  |  |
| Rv1189 | sigl | ECF family sigma factor | 5. Esteras | s and II |  |
| Rv3328c | sigJ | similar to Sigl, ECF family | Rv0220 | lipC | probable esterase |
| Rv0445c | sigk | ECF-type sigma factor | Rv1923 | lipD | probable esterase |
| Rv0735 | sigL | sigma-70 factors ECF subfamily | Rv3775 | lipE | probable hydrolase |
| Rv3911 | sigM | probable sigma factor, similar to | Rv3487c | lipF | probable esterase |
|  |  | SigE | Rv0646c | lip $G$ | probable hydrolase |
| Rv3366 | spol | probable rRNA methylase | Rv1399c | lipH | probable lipase |
| Rv3455c | truA | probable pseudouridylate syn- | Rv1400c | lipl | probable lipase |
|  |  | thase | Rv1900c | lipJ | probable esterase |
| Rv2793c | truB | tRNA pseudouridine 55 synthase | Rv2385 | lipK | probable acetyl-hydrolase |
| Rv1644 | tsnR | putative 23 rRNA methyltrans- | Rv1497 | lipL | esterase |
|  |  | ferase | Rv2284 | lipM | probable esterase |
| Rv3649 | - | ATP-dependent DNA/RNA helicase | Rv2970c | lipN | probable lipase/esterase |
|  |  |  | Rv1426c | lipO | probable esterase |
|  |  |  | Rv2463 | lip P | probable esterase |
| 8. Polysaccharides (cytoplasmic) |  |  | Rv2485c | lipQ | probable carboxlyesterase |
| Rv1326c | glgB | 1,4- $\alpha$-glucan branching enzyme | Rv3084 | lipR | probable acetyl-hydrolase |
| Rv1328 | $g l g P$ | probable glycogen phosphory- | Rv3176c | lipS | probable esterase/lipase |
|  |  | lase | Rv2045c | lipT | probable carboxylesterase |
| Rv1564c | $g l g X$ | probable glycogen debranching | Rv1076 | lipU | probable esterase |
|  |  | enzyme | Rv3203 | lipV | probable lipase |
| Rv1563c Rv1562c | $\begin{aligned} & g \lg Y \\ & g \lg Z \end{aligned}$ | putative $\alpha$-amylase | Rv0217c | lipW | probable esterase |
|  |  | maltooligosyltrehalose trehalohy- | Rv2351c | plca | phospholipase C precursor |
|  |  | drolase | Rv2350c | plcB | phospholipase C precursor |
| Rv0126 | - | probable glycosyl hydrolase | Rv2349c | plc C | phospholipase C precursor |
| Rv1781c Rv2471 |  | probable $4-\alpha$-glucanotransferase | Rv1755c | plcD | partial CDS for phospholipase C |
|  |  | B. Degradation of macromolecules |  |  | Rv1104 Rv1105 | - | probable esterase pseudogene probable esterase pseudogene |
|  |  |  |  |  |  |  |  |
| 1. RNA |  |  | 6. Aromatic hydrocarbons |  |  |
| $\begin{aligned} & \text { Rv1014c } \\ & \text { Rv2925c } \end{aligned}$ | pth | peptidyl-tRNA hydrolase | Rv3469C | $m h p E$ | probable 4-hydroxy-2-oxovalerate aldolase |
|  | rnc | RNAse III |  |  |  |
| Rv2444c | rne | similar at C-term to ribonuclease E | Rv0316 | - | probable muconolactone isomerase |
| $\begin{aligned} & \text { Rv2902c } \\ & \text { Rv3923c } \end{aligned}$ | $\begin{aligned} & \text { rnhB } \\ & \text { rnpA } \end{aligned}$ | ribonuclease HII ribonuclease P protein component ribonuclease PH | Rv0771 | - | probable 4-carboxymuconolac- |
|  |  |  |  |  | tone decarboxylase |
|  |  |  | Rv0939 | - | probable dehydrase |
| Rv1340 | rphA |  | Rv1723 | - | 6-aminohexanoate-dimer hydro- |


|  |  | lase |
| :---: | :---: | :---: |
| Rv2715 |  | 2-hydroxymuconic semialdehyde hydrolase |
| Rv3530c |  | probable cis-diol dehydrogenase |
| Rv3534c |  | 4-hydroxy-2-oxovalerate aldolase |
| Rv3536c |  | aromatic hydrocarbon degradation |
| C. Cell envelope |  |  |
| 1. Lipoproteins (IpPA-Ipro) 65 |  |  |
| 2. Surface polysaccharides, lipopolysaccharides, proteins and antigens |  |  |
| Rv0806c | cps $Y$ | probable UDP-glucose-4epimerase |
| Rv3811 | csp | secreted protein |
| Rv1677 | dsbF | highly similar to C-term Mpt53 |
| Rv3794 | embA | involved in arabinogalactan synthesis |
| Rv3795 | embB | involved in arabinogalactan synthesis |
| Rv3793 | embC | involved in arabinogalactan synthesis |
| Rv3875 | esat6 | early secretory antigen target |
| Rv0112 | gca | probable GDP-mannose dehydratase |
| Rv0113 | gmha | phosphoheptose isomerase |
| Rv2965c | kdtB | lipopolysaccharide core biosynthesis protein |
| Rv2878c | mpt53 | secreted protein Mpt53 |
| Rv1980c | mpt64 | secreted immunogenic protein Mpb64/Mpt64 |
| Rv2875 | mpt70 | major secreted immunogenic protein Mpt70 precursor |
| Rv2873 | mpt83 | surface lipoprotein Mpt83 |
| Rv0899 | ompA | member of OmpA family |
| Rv3810 | pirG | cell surface protein precursor (Erp protein) |
| Rv3782 | $r f b E$ | similar to rhamnosyl transferase |
| Rv1302 | ffe | undecaprenyl-phosphate $\alpha-\mathrm{N}$ acetyIglucosaminyltransferase |
| Rv2145c | wag31 | antigen 84 (aka wag31) |
| Rv0431 |  | tuberculin related peptide (AT103) |
| Rv0954 | - | cell envelope antigen |
| Rv1514c |  | involved in polysaccharide synthesis |
| Rv1518 |  | involved in exopolysaccharide synthesis |
| Rv1758 |  | partial cutinase |
| Rv1910c | - | probable secreted protein |
| Rv1919c | - | weak similarity to pollen antigens |
| Rv1984c |  | probable secreted protein |
| Rv1987 |  | probable secreted protein |
| Rv2223c | - | probable exported protease |
| Rv2224c | - | probable exported protease |
| Rv2301 |  | probable cutinase |
| Rv2345 |  | precursor of probable membrane protein |
| Rv2672 |  | putative exported protease |
| Rv3019c | - | similar to Esat6 |
| Rv3036c |  | probable secreted protein |
| Rv3449 |  | probable precursor of serine protease |
| Rv3451 |  | probable cutinase |
| Rv3452 |  | probable cutinase precursor |
| Rv3724 |  | obable cutinase precursor |
| 3. Murein sacculus and peptidoglycan |  |  |
| Rv2911 | dacB | penicillin binding protein |
| Rv2981c | ddIIA | D-alanine-D-alanine ligase A |
| Rv3809c | glf | UDP-galactopyranose mutase |
| Rv1018c | glmU | UDP-N-acetylglucosamine pyrophosphorylase |
| Rv3382c | lytB | LytB protein homologue |
| Rv1110 | $1 y t B^{\prime}$ | very similar to LytB |
| Rv1315 | murA | UDP-N-acetylglucosamine-1-carboxyvinyltransferase |
| Rv0482 | murB | UDP-N-acetylenolpyruvoylglucosamine reductase |
| Rv2152c | murc | UDP-N-acetyl-muramate-alanine ligase |
| Rv2155c | murD | UDP-N-acetylmuramoylalanine-Dglutamate ligase |
| Rv2158c | murE | meso-diaminopimelate-adding enzyme |
| Rv2157c | murF | D-alanine:D-alanine-adding enzyme |
| Rv2153c | murG | transferase in peptidoglycan synthesis |
| Rv1338 | mur | glutamate racemase |
| Rv2156c | murX | phospho-N-acetylmuramoylpetapeptide transferase |
| Rv3332 | $n a g A$ | N -acetylglucosamine-6-Pdeacetylase |
| Rv0016c | pbpA | penicillin-binding protein |
| Rv2163c | $p b p B$ | penicillin-binding protein 2 |
| Rv0050 | ponA | penicillin-bonding protein |
| v3682 | ponA' | class A penicillin binding protein |
| Rv0017c | rodA | FtsW/RodA/SpovE family |
| Rv0907 |  | probable penicillin binding protein |


| Rv1367c | - | probable penicillin binding protein |
| :---: | :---: | :---: |
| Rv1730c | - | probable penicillin binding protein |
| Rv1922 | - | probable penicillin binding protein |
| Rv2864c | - | probable penicillin binding protein |
| Rv3330 | - | probable penicillin binding protein |
| Rv3627c | - | probable penicillin binding protein |
| 4. Conserved membrane proteins |  |  |
| Rv0402c | mmpL1 | conserved large membrane protein |
| Rv0507 | mmpL2 | conserved large membrane protein |
| Rv0206c | mmpL3 | conserved large membrane protein |
| Rv0450c | mmpL4 | conserved large membrane protein |
| Rv0676c | mmpL5 | conserved large membrane protein |
| Rv1557 | mmpL6 | conserved large membrane protein |
| Rv2942 | mmpL7 | conserved large membrane protein |
| Rv3823c | mmpL8 | conserved large membrane protein |
| Rv2339 | mmpL9 | conserved large membrane protein |
| Rv1183 | mmpL10 | conserved large membrane protein |
| Rv0202c | mmpL11 | conserved large membrane protein |
| Rv1522c | mmpL 12 | conserved large membrane protein |
| Rv0403c | mmpS1 | conserved small membrane protein |
| Rv0506 | mmpS2 | conserved small membrane protein |
| Rv2198c | $m m p S 3$ | conserved small membrane protein |
| Rv0451c | mmpS4 | conserved small membrane protein |
| Rv0677c | mmpS5 | conserved small membrane protein |
| 5. Other membrane proteins 211 |  |  |
| III. Cell processes |  |  |
| A. Transport/binding proteins |  |  |
| 1. Amino |  |  |
| Rv2127 | ans $P$ | L-asparagine permease |
| Rv0346c | aroP2 | probable aromatic amino acid permease |
| Rv0917 | betP | glycine betaine transport |
| Rv1704c | cycA | transport of D-alanine, D-serine and glycine |
| Rv3666c | dppA | probable peptide transport system permease |
| Rv3665c | dppB | probable peptide transport system permease |
| Rv3664c | dppC | probable peptide transport system permease |
| Rv3663c | $d p p D$ | probable ABC-transporter |
| Rv0522 | gabP | probable 4-amino butyrate transporter |
| Rv0411c | glnH | putative glutamine binding protein |
| Rv2564 | $g \ln Q$ | probable ATP-binding transport protein |
| Rv1280c | oppA | probable oligopeptide transport protein |
| Rv1283c | oppB | oligopeptide transport protein |
| Rv1282c | oppC | oligopeptide transport system permease |
| Rv1281c | oppD | probable peptide transport protein |
| Rv2320c | roce | arginine/ornithine transporter |
| Rv3253c | - | probable cationic amino acid transport |
| Rv3454 | - | possible proline permease |
| 2. Cations |  |  |
| Rv2920c | amt | putative ammonium transporter |
| Rv1607 | chaA | putative calcium/proton antiporter |
| Rv1239c | corA | probable magnesium and cobalt transport protein |
| Rv0092 | ctpA | cation-transporting ATPase |
| Rv0103c | $\operatorname{ctp} B$ | cation transport ATPase |
| Rv3270 | ctp $C$ | cation transport ATPase |
| Rv1469 | $\operatorname{ctp} D$ | probable cadmium-transporting ATPase |
| Rv0908 | ctpE | probable cation transport ATPase |
| Rv1997 | ctp F | probable cation transport ATPase |
| Rv1992c | $\operatorname{ctp} G$ | probable cation transport ATPase |
| Rv0425c | ctpH | C-terminal region putative cationtransporting ATPase |
| Rv0107c | ctpl | probable magnesium transport ATPase |
| Rv0969 | $\operatorname{ctp} V$ | cation transport ATPase |
| Rv3044 | $f e \mathrm{~B}$ | putative Felll-dicitrate transporter |
| Rv0265c trate | fecB2 | iron transport protein Felll dicitransporter |
| Rv1029 | kdpA | potassium-transporting ATPase A chain |


| Rv1030 | $k d p B$ | potassium-transporting ATPase B chain |
| :---: | :---: | :---: |
| Rv1031 | $k d p C$ | potassium-transporting ATPase C chain |
| Rv3236c | kefB | probable glutathione-regulated potassium-efflux protein |
| Rv2877c | merT | possible mercury resistance transport system |
| Rv1811 | mgt $C$ | probable magnesium transport ATPase protein C |
| Rv0362 | mgtE | putative magnesium ion transporter |
| Rv2856 | nicT | probable nickel transport protein |
| Rv0924c | nramp | transmembrane protein belonging to Nramp family |
| Rv2691 | trkA | probable potassium uptake protein |
| Rv2692 | trkB | probable potassium uptake protein |
| Rv2287 | $y j c E$ | probable $\mathrm{Na+} / \mathrm{H}+$ exchanger |
| Rv2723 |  | probable membrane protein, tellurium resistance |
| Rv3162c |  | probable membrane protein |
| Rv3237c | - | possible potassium channel protein |
| Rv3743c |  | probable cation-transporting ATPase |
| 3. Carboh | rates, | nic acids and alcohols |
| Rv2443 | dctA | C4-dicarboxylate transport protein |
| Rv3476c | kgtP | sugar transport protein |
| Rv1902c | nanT | probable sialic acid transporter |
| Rv1236 | $\operatorname{sug} A$ | membrane protein probably involved in sugar transport |
| Rv1237 | sugB | sugar transport protein |
| Rv1238 | sugC | ABC transporter component of sugar uptake system |
| Rv3331 | sugl | probable sugar transport protein |
| Rv2835c | ugp $A$ | sn-glycerol-3-phosphate permease |
| Rv2833c | ugp B | sn-glycerol-3-phosphate-binding periplasmic lipoprotein |
| Rv2832c | ugp $C$ | sn-glycerol-3-phosphate transport ATP-binding protein |
| Rv2834c | ugpE | sn-glycerol-3-phosphate transport system protein |
| Rv2316 | uspA | sugar transport protein |
| Rv2318 | $u s p C$ | sugar transport protein |
| Rv2317 | uspE | sugar transport protein |
| Rv1200 | - | probable sugar transporter |
| Rv2038c | - | probable ABC sugar transporter |
| Rv2039c | - | probable sugar transporter |
| Rv2040c |  | probable sugar transporter |
| Rv2041c | - | probable sugar transporter |
| 4. Anions |  |  |
| Rv2684 | arsA | probable arsenical pump |
| Rv2685 | arsB | probable arsenical pump |
| Rv3578 | arsB2 | probable arsenical pump |
| Rv2643 | arsC | probable arsenical pump |
| Rv2397c | cys $A$ | sulphate transport ATP-binding protein |
| Rv2399c | cys $T$ | sulphate transport system permease protein |
| Rv2398c | cysW | sulphate transport system permease protein |
| Rv1857 | $\bmod A$ | molybdate binding protein |
| Rv1858 | $\operatorname{modB}$ | transport system permease, molybdate uptake |
| Rv1859 | modC | molybdate uptake ABCtransporter |
| Rv1860 | $\bmod D$ | precursor of Apa (45/47 <br> kD secreted protein) |
| Rv2329c | nark1 | probable nitrite extrusion protein |
| Rv1737c | narK2 | nitrite extrusion protein |
| Rv0261c | narK3 | nitrite extrusion protein1 |
| Rv0267 | narU | similar to nitrite extrusion protein 2 |
| Rv0934 | phoS1 | PstS component of phosphate uptake |
| Rv0928 | phoS2 | PstS component of phosphate uptake |
| Rv0820 | phot | phosphate transport system ABC transporter |
| Rv3301c | phoY1 | phosphate transport system regulator |
| Rv0821c | phoY2 | phosphate transport system regulator |
| Rv0545c | pitA | low-affinity inorganic phosphate transporter |
| Rv2281 | pitB | phosphate permease |
| Rv0930 | pstA1 | PstA component of phosphate uptake |
| Rv0936 | pstA2 | PstA component of phosphate uptake |
| Rv0933 | pstB | ABC transport component of phosphate uptake |
| Rv0935 | pstC | PstC component of phosphate uptake |
| Rv0929 | pstC2 | membrane-bound component of |



