Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Viability of λ phages carrying a perfect palindrome in the absence of recombination nucleases

Abstract

In Escherichia coli in vitro constructions of perfect palindromes larger than 30 base pairs (bp) long have in general been unstable1–8. A perfect palindrome has the unique possibility of forming a cruciform structure, and it is this feature which probably results in its instability. Negative supercoiling favours the formation of the cruciform conformation, which in turn causes the molecule to relax1,2. This relaxation may render replicons containing large perfect palindromes inviable4. An alternative hypothesis for inviability has been that the cruciform interferes with replication by favouring strand switching by polymerase I9. Here we show that the simultaneous absence of two recombination nucleases, the recBC product, exonuclease V, and the sbcB product, exonuclease I, confers viability on a derivative of phage λ carrying a perfect palindrome of inverted repeat length 1,600 bases. This observation suggests a third hypothesis—that nucleolytic cleavage of the cruciform is responsible for the inviability of the phage. Such an activity has been shown in vitro for T4 exonuclease VII10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gellert, M., Mizuuchi, K., O'Dea, M. H., Ohmori, H. & Tomizawa, J. Cold Spring Harb. Symp. quant. Biol. 43, 35–40 (1979).

    Article  CAS  Google Scholar 

  2. Mizuuchi, K., Mizuuchi, M. & Gellert, M. J. molec. Biol. 156, 229–243 (1982).

    Article  CAS  Google Scholar 

  3. Behnke, K., Malke, H., Hartmann, M. & Walter, F. Plasmid 2, 605–615 (1979).

    Article  CAS  Google Scholar 

  4. Lilley, D. M. J. Nature 292, 380–382 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Collins, J. Cold Spring Harb. Symp. quant. Biol. 45, 409–416 (1981).

    Article  CAS  Google Scholar 

  6. Collins, J., Volckaert, G. & Nevers, P. Gene 19, 139–146 (1982).

    Article  CAS  Google Scholar 

  7. Hagan, C. & Warren, G. Gene 19, 147–151 (1982).

    Article  CAS  Google Scholar 

  8. Sadler, J. R. et al. Gene 3, 211–232 (1978).

    Article  CAS  Google Scholar 

  9. Bolivar, F. et al. Proc. natn. Acad. Sci. U.S.A. 74, 5265–5269 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Mizuuchi, K., Kemper, B., Hays, J. & Weisberg, R. Cell 29, 357–365 (1982).

    Article  CAS  Google Scholar 

  11. Horii, Z. I. & Clark, A. J. J. molec. Biol. 80, 327–344 (1973).

    Article  CAS  Google Scholar 

  12. Stahl, F. W. et al. Virus Research (eds Fox, C. F. & Robinson, W. S.) 487–503 (Academic, New York, 1973).

    Google Scholar 

  13. Kushner, S., Nagaishi, H., Templin, A. & Clark, A. J. Proc. natn. Acad. Sci. U.S.A. 68, 824–827 (1971).

    Article  ADS  CAS  Google Scholar 

  14. Bachman, B. J. Bact. Rev. 36, 525–557 (1972).

    Google Scholar 

  15. Templin, A., Margosian, L. & Clark, A. J. J. Bact. 143, 590–596 (1978).

    Google Scholar 

  16. Kobayashi, I. & Ikeda, H. Molec. gen. Genet. 153, 237–245 (1977).

    Article  CAS  Google Scholar 

  17. Sternberg, N., Tiermeier, D. & Enquist, L. Gene 1, 255–280 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leach, D., Stahl, F. Viability of λ phages carrying a perfect palindrome in the absence of recombination nucleases. Nature 305, 448–451 (1983). https://doi.org/10.1038/305448a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305448a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing