Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000-molecular weight protein precursor

Abstract

Epidermal growth factor (EGF) has a profound effect on the differentiation of specific cells in vivo, and has been shown to be a potent mitogenic factor for a variety of cultured cells, of both ectodermal and mesodermal origin (see ref. 1 for review). This 53-amino acid polypeptide of known sequence2 contains six cysteine residues3, which are thought to form three intrachain disulphide bonds4. Urogastrone, a polypeptide bearing anti-gastric secretory activity isolated from human urine5, which is presumably synthesized in submandibular and Brunner's glands6,7, shares extensive sequence homology (70%) with EGF and may represent the human EGF equivalent. Here we present the sequence of a mouse EGF cDNA clone, which suggests that EGF is synthesized as a large protein precursor of 1,168 amino acids. Our data indicate that the discrepancy between EGF levels in male and female mouse submaxillary glands (MSGs) is due to different EGF mRNA levels in these tissues, and suggest that precursor EGF processing may differ from that described previously for other polypeptide hormones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carpenter, G. & Cohen, S. A. Rev. Biochem. 48, 193–216 (1979).

    Article  CAS  Google Scholar 

  2. Taylor, J. M., Mitchell, W. M. & Cohen, S. J. biol. Chem. 247, 5928–5934 (1972).

    CAS  PubMed  Google Scholar 

  3. Savage, C. R. Jr, Inagami, T. & Cohen, S. J. biol. Chem. 247, 7612–7621 (1972).

    CAS  PubMed  Google Scholar 

  4. Savage, C. R. Jr, Hash, J. H. & Cohen, S. J. biol. Chem. 248, 7669–7672 (1973).

    CAS  PubMed  Google Scholar 

  5. Gregory, H. Nature 257, 325–327 (1975).

    Article  CAS  ADS  Google Scholar 

  6. Elder, J. B., Williams, G., Lacey, E. & Gregory, H. Nature 271, 466–467 (1978).

    Article  CAS  ADS  Google Scholar 

  7. Heitz, P. U. et al. Gut 19, 408–413 (1978).

    Article  CAS  Google Scholar 

  8. Wallace, B. et al. Nucleic Acids Res. 9, 879–894 (1981).

    Article  CAS  Google Scholar 

  9. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  CAS  ADS  Google Scholar 

  10. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  CAS  ADS  Google Scholar 

  11. Tosi, M., Young, R. A., Hagenbuchle, O. & Schibler, U. Nucleic Acids Res. 9, 2313–2323 (1981).

    Article  CAS  Google Scholar 

  12. Blobel, G. et al., Soc. exp. Biol. Symp. 23, 9–36 (1979).

    Google Scholar 

  13. Gregory, H., Walsh, S. & Hopkins, C. R. Gastroenterology 77, 313–318 (1979).

    Article  CAS  Google Scholar 

  14. Noda, M. et al. Nature 295, 202–206 (1982).

    Article  CAS  ADS  Google Scholar 

  15. Kakidani, H. et al. Nature 298, 245–249 (1982).

    Article  CAS  ADS  Google Scholar 

  16. Nakanishi, S. et al. Nature 278, 423–427 (1979).

    Article  CAS  ADS  Google Scholar 

  17. Amara, S. G., Jonmas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Nature 298, 240–244 (1982).

    Article  CAS  ADS  Google Scholar 

  18. Frey, P., Forand, R., Maciag, T. & Shooter, E. M. Proc. natn. Acad. Sci. U.S.A. 76, 6294–6298 (1979).

    Article  CAS  ADS  Google Scholar 

  19. Ullrich, A. et al. Science 196, 1313–1317 (1977).

    Article  CAS  ADS  Google Scholar 

  20. Dayhoff, M. O. Atlas of Protein Sequence and Structure (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, A., Dull, T. & Ullrich, A. Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000-molecular weight protein precursor. Nature 303, 722–725 (1983). https://doi.org/10.1038/303722a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303722a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing