Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ribosomal RNA transcription in vitro is species specific

Abstract

Eukaryotic cells possess three distinct nuclear DNA-dependent RNA polymerases which are responsible for transcription of different sets of genes (for review see refs 1, 2). Recently, cell-free transcription systems have been developed which faithfully initiate transcription of isolated genes by the corresponding RNA polymerase in the presence of crude cellular extracts. These cellular extracts supply additional components required for specific transcription3–6. Successful in vitro systems for transcription of RNA polymerase II or III genes were developed using either heterologous or homologous components7–11. In contrast, an analogous cell-free system for the RNA polymerase I transcription unit from mouse has been shown to be active only with homologous extracts from mouse cells6. Data presented here show that in vitro transcription of ribosomal DNA isolated from mouse, human and a protozoan requires completely homologous components. None of the three active cell-free systems is capable of correct initiation on the nonhomologous templates. Further, supplementation of mouse extracts with purified protozoan RNA polymerase I failed to result in specific transcription of the protozoan rDNA, suggesting that the species specificity of pre-ribosomal RNA synthesis resides, in part, in the transcription factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chambon, P. A. Rev. Biochem. 44, 613–638 (1975).

    Article  CAS  Google Scholar 

  2. Paule, M. R. Trends biochem. Sci. 6, 128–131 (1981).

    Article  CAS  Google Scholar 

  3. Wu, G. J. Proc. natn. Acad. Sci. U.S.A. 75, 2175–2179 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Weil, P. A., Luse, D. S., Segall, J. & Roeder, R. G. Cell 18, 469–484 (1979).

    Article  CAS  Google Scholar 

  5. Manley, J. L., Fire, A., Cano, A., Sharp, P. A. & Gefter, M. L. Proc. natn. Acad. Sci. U.S.A. 77, 3855–3859 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Grummt, I. Proc. natn. Acad. Sci. U.S.A. 78, 727–731 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Wasylyk, B., Kedinger, C., Corden, J., Brison, O. & Chambon, P. Nature 285, 367–373 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Proudfoot, N. J., Shander, M. H., Manley, J. L., Gefter, M. L. & Maniatis, T. Science 209, 1329–1336 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Sprague, K. U., Larson, D. & Morton, D. Cell 22, 171–178 (1980).

    Article  CAS  Google Scholar 

  10. Dingermann, T. et al. Nucleic Acids Res. 9, 3907–3917 (1981).

    Article  CAS  Google Scholar 

  11. Grummt, I. & Pflugfelder, G. ICN-UCLA Symp. molec. cell. Biol. 23, 303–312 (1981).

    CAS  Google Scholar 

  12. Long, E. O., Rebbert, M. L. & Dawid, J. B. Proc. natn. Acad. Sci. U.S.A. 78, 1513–1517 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Sollner-Webb, & Reeder, R. H. Cell 18, 485–499 (1979).

    Article  CAS  Google Scholar 

  14. Boseley, P., Moss, T., Mächler, M., Portmann, R. & Birnstiel, M. Cell 17, 19–31 (1979).

    Article  CAS  Google Scholar 

  15. Grummt, I. Nucleic Acids Res. 9, 6093–6102 (1981).

    Article  CAS  Google Scholar 

  16. D'Alessio, J. M., Harris, G. H., Perna, P. J. & Paule, M. R. Biochemistry 20, 3822–3827 (1981).

    Article  CAS  Google Scholar 

  17. Spindler, S. R., Duester, G. L., D'Alessio, J. M. & Paule, M. R. J. biol. Chem. 253, 4669–4675 (1978).

    CAS  PubMed  Google Scholar 

  18. Goldberg, M. L. thesis, Stanford Univ. (1979).

  19. Benoist, C., O'Hare, K., Breathnach, R. & Chambon, P. Nucleic Acids Res. 8, 127–142 (1980).

    Article  CAS  Google Scholar 

  20. Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

  21. Korn, L. J. & Brown, D. D. Cell 15, 1145–1156 (1978).

    Article  CAS  Google Scholar 

  22. Fowlkes, D. M. & Shenk, T. Cell 22, 405–413 (1980).

    Article  CAS  Google Scholar 

  23. Bayev, A. A. et al. Nucleic Acids Res. 8, 4919–4926 (1980).

    Article  CAS  Google Scholar 

  24. Bach, R., Grummt, J. & Allet, B. Nucleic Acids Res. 9, 1559–1569 (1981).

    Article  CAS  Google Scholar 

  25. Urano, Y., Kominami, R., Mishima, Y. & Muramatsu, M. Nucleic Acids Res. 8, 6043–6058 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grummt, I., Roth, E. & Paule, M. Ribosomal RNA transcription in vitro is species specific. Nature 296, 173–174 (1982). https://doi.org/10.1038/296173a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296173a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing