Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Triphosphoinositide increases glycoprotein lateral mobility in erythrocyte membranes

Abstract

The finding1 that the turnover of the anionic phospholipid, phosphatidylinositol (PI), increases with increased synaptic activity has long stimulated interest in the possible functional roles of this phospholipid and its phosphorylated products, phosphatidylinositol 4,5-biphosphate (triphosphoinositide or TPI) and phosphatidyl-myoinositol 4-phosphate (diphosphoinositide or DPI)2. TPI metabolism is altered by a variety of cellular stimuli2, but no specific function of the lipid has been identified. However, in many instances (see, for example, refs 3–6) a correlation has been observed between changes in PI metabolism and membrane structure. We have recently correlated membrane macro-viscosity with the lateral mobility of membrane glycoproteins7, and have shown that 2,3-diphosphoglycerate (2,3-DPG), which is similar in structure to TPI, increases glycoprotein lateral mobility8. We now report that TPI also increases the lateral mobility of glycoproteins when added to erythrocyte membranes, and suggest that TPI acts similarly to other polyanions by disrupting the erythrocyte membrane skeleton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hokin, L. M. & Hokin, M. R. Biochim. biophys. Acta 28, 102 (1955).

    Article  Google Scholar 

  2. Michell, R. H. Trends biochem. Sci. 4, 128 (1979).

    Article  CAS  Google Scholar 

  3. Allan, D. & Michell, R. H. Biochim. biophys. Acta 508, 277 (1978).

    Article  CAS  Google Scholar 

  4. Allan, D. & Thomas, P. Biochem. J. 198, 433 (1981).

    Article  CAS  Google Scholar 

  5. Allan, D. & Thomas, P. Biochem. J. 198, 441 (1981).

    Article  CAS  Google Scholar 

  6. Kuettner, J. F. et al. Am. J. Path. 88, 81 (1977).

    CAS  PubMed  Google Scholar 

  7. Koppel, D. E., Sheetz, M. P. & Schindler, M. Proc. natn. Acad. Sci. U.S.A. 78, 3576 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Schindler, M., Koppel, D. & Sheetz, M. P. Proc. natn. Acad. Sci. U.S.A. 77, 1457 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Koppel, D. E. Biophys. J. 28, 281 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Koppel, D. E., Sheetz, M. P. & Schindler, M. Biophys. J. 30, 187 (1980).

    Article  CAS  Google Scholar 

  11. Koppel, D. E. & Sheetz, M. P. Nature 293, 159 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Schacht, J. J. Lipid Res. 19, 1063 (1978).

    CAS  PubMed  Google Scholar 

  13. Sheetz, M. P. & Casaly, J. J. biol. Chem. 255, 9955 (1980).

    CAS  PubMed  Google Scholar 

  14. Sheetz, M. P. & Casaly, J. Scand. J. clin. Lab. Invest. 41, Suppl. 156, 113 (1981).

    Article  Google Scholar 

  15. Wolfe, L. C., Lux, S. E. & Ohanian, V. J. supramolec Struct. Suppl. 5, 123 (1981).

    Google Scholar 

  16. Shapiro, D. L. & Marchesi, V. T. J. biol. Chem. 252, 508 (1977).

    CAS  PubMed  Google Scholar 

  17. Shukla, S. D., Coleman, R., Finean, J. B. & Michell, R. H. Biochem. J. 179, 441 (1979).

    Article  CAS  Google Scholar 

  18. Ryu, E. K. & MacCoss, M. J. Lipid Res. 20, 561 (1979).

    CAS  PubMed  Google Scholar 

  19. Gonzalez-Sastre, F. & Folch-Pi, J. J. Lipid Res. 9, 532 (1968).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheetz, M., Febbroriello, P. & Koppel, D. Triphosphoinositide increases glycoprotein lateral mobility in erythrocyte membranes. Nature 296, 91–93 (1982). https://doi.org/10.1038/296091a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296091a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing