Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bacterial origin of East Australian continental margin phosphorites

Abstract

Many models of the origin of marine phosphorites require a sediment rich in organic matter, which by decomposition releases phosphorus for the precipitation of carbonate fluorapatite1–7. This concept is useful in explaining contemporary phosphorite in areas of very high productivity off the coasts of Peru–Chile and South West Africa8–10 where there are high organic matter fluxes to the sea floor4–7,11. It does not explain the origin of marine phosphorite deposits which formed in regions of limited oceanic upwelling and productivity12–14. The East Australian continental margin, an area of phosphogenesis throughout the late Pleistocene and Holocene13,14, is a modern analogue of an ‘East Coast’ phosphogenic province15–17 with low productivity over the upper slope region where the most recent phosphorites have been found18. Evidence is reported here for the carbonate fluorapatite in the East Australian phosphorites being located within bacterial cellular structures, and a model proposed for the origin of these deposits through the slow bacterial assimilation of phosphorus from seawater in an area of restricted sedimentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bushinski, G. I. Lith. Min. Res., Cons. Bur., N.Y. 292–311 (1966).

  2. Gulbrandsen, R. A. Econ. Geol. 64, 365–382 (1969).

    Article  CAS  Google Scholar 

  3. Baturin, G. N., Kochenov, A. V. & Petelin, V. P. Lith. Min. Res., Cons. Bur., N.Y. 266–276 (1970).

  4. Senin, Y. M. Lith. Min. Res., Cons. Bur., N.Y. 8–20 (1970).

  5. Romankevich, Y. A. & Baturin, G. N. Geokhimiya 6, 716–726 (1972).

    Google Scholar 

  6. Burnett, W. C. Bull. geol. Soc. Am. 88, 813–823 (1977).

    Article  CAS  Google Scholar 

  7. Price, N. B. & Calvert, S. E. Chem. Geol. 23, 151–170 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Baturin, G. N., Merkulova, K. I. & Chalov, P. I. Mar. Geol. 13, 37–41 (1972).

    Article  ADS  Google Scholar 

  9. Veeh, H. H., Burnett, W. C. & Soutar, A. Science 181, 844–845 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Burnett, W. C. & Veeh, H. H. Geochim. cosmochim. Acta 41, 755–764 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Suess, E. Geochim. cosmochim. Acta 45, 577–588 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Pevear, D. R. Econ. Geol. 61, 251–266 (1966).

    Article  CAS  Google Scholar 

  13. Kress, A. G. & Veeh, H. H. Mar. Geol. 36, 143–157 (1980).

    Article  ADS  CAS  Google Scholar 

  14. O'Brien, G. W. & Veeh, H. H. Nature 288, 690–692 (1980).

    Article  ADS  CAS  Google Scholar 

  15. McKelvey, V. E. Bull. U.S. geol. Surv. 1252 -D, 1–21 (1967).

    Google Scholar 

  16. McKelvey, V. E. & Wang, F. H. U. S. Geol. Surv. Misc. Geol. Inv. Map 1–632 (1969).

  17. Cook, P. J. Handbook of Stratabound and Stratiform Ore Deposits (ed. Wolf, K. H.) 505–535 (Elsevier, Amsterdam, 1976).

    Google Scholar 

  18. Jitts, H. R. Aust. J. mar. Freshwat. Res. 16, 151–162 (1965).

    Article  Google Scholar 

  19. Leifson, E. Int. Bull. bact. Nomencl. Taxon. 12, 133–170 (1962).

    Google Scholar 

  20. Pointdexter, J. S. Bacteriol. Rev. 28, 231–295 (1964).

    Google Scholar 

  21. Ennever, J. Ann. N.Y. Acad. Sci. 109, 4–13 (1963).

    Article  ADS  CAS  Google Scholar 

  22. Rizzo, A. A., Scott, D. B. & Blade, H. A. Ann. N.Y. Acad. Sci. 109, 14–22 (1963).

    Article  ADS  CAS  Google Scholar 

  23. Bousfield, I. J. Coryneform Bacteria (eds Bousfield, I. J. & Callely, A. G.) 217–233 (Academic, London, 1978).

    Google Scholar 

  24. Shewan, J. M. Symp. Mar. Microbiol. 499–521 (Thomas, Springfield, 1963).

  25. Sieburth, J. Mc. N. Deep-Sea Res. 18, 1111–1121 (1971).

    Google Scholar 

  26. McLeod, R. A. Bacteriol. Rev. 29, 9–23 (1965).

    Google Scholar 

  27. Porter, J. R. Bacterial Chemistry and Physiology (Wiley, New York, 1946).

    Google Scholar 

  28. Rochford, D. J. Div. Fish. Oceanogr. Tech. Pap. No. 33 (CSIRO, Australia, 1972).

  29. Rochford, D. J. Aust. J. mar. Freshwat. Res. 26, 233–243 (1975).

    Article  Google Scholar 

  30. Breger, D. L. Min. Engng Wld 35, 631–633 (1911).

    Google Scholar 

  31. Godfrey, J. S., Cresswell, G. R. & Boland, F. M. J. phys. Oceanogr. 10, 301–307 (1980).

    Article  ADS  Google Scholar 

  32. Godfrey, J. S., Cresswell, G. R., Golding, T. J., Pearce, A. E. & Boyd, R. J. phys. Oceanogr. 10, 430–440 (1980).

    Article  ADS  Google Scholar 

  33. Bremner, J. M. J. geol. Soc. Lond. 137, 773–786 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, G., Harris, J., Milnes, A. et al. Bacterial origin of East Australian continental margin phosphorites. Nature 294, 442–444 (1981). https://doi.org/10.1038/294442a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294442a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing