Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sensing of ΔμH+ in phototaxis of Halobacterium halobium

Abstract

Phototaxis in Halobacterium halobium is governed by two distinct photosysterns1. Cells are attracted by green light, which is absorbed by bacteriorhodopsin, effectively a light-driven proton pump2,3, and repelled by UV and blue light absorbed by a retinal-dependent pigment and by carotenoids1,4–10. One possibility is that the bacterium detects changes in light intensity directly by the interaction of excited absorbent molecules with the tactile system, in which case the phototactic receptors would be analogous to bacterial chemoreceptors11. However, H. halobium may sense light changes indirectly as changes in the chemical potential of hydrogen ions (Δμ̄H+)12,13; the coincidence of the action spectra for positive phototaxis and photosynthesis14,15 indeed support the suggestion that the cells may possess a specific Δμ̄H+ receptor, called a ‘protometer’. We now describe experiments which indicate that positive phototaxis in H. halobium is governed by Δμ̄H+ sensing, but that negative phototaxis is mediated by a specific photoreceptor system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hildebrand, E. & Dencher, N. Nature 257, 46–48 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Oesterhelt, D. & Stoeckenius, W. Proc. natn. Acad. Sci. U.S.A. 70, 2853–2857 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Kayushin, L. P. & Skulachev, V. P. FEBS Lett. 39, 39–42 (1974).

    Article  CAS  Google Scholar 

  4. Hildebrand, E. Biophys. Struct. Mechanism 3, 69–77 (1977).

    Article  CAS  Google Scholar 

  5. Dencher, N. in Energ. Struct. Halophil Microorg. (eds Caplan, S. R. & Ginzburg, M.) 335–340 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  6. Hildebrand, E. in Taxis and Behavior (ed. Harzebauer, G. L.) 35–73 (Chapman and Hall, London, 1978).

    Google Scholar 

  7. Dencher, N. A. & Hildebrand, E. Z. Naturf. 34, 841–847 (1979).

    Article  CAS  Google Scholar 

  8. Spudich, J. L. & Stoeckenius, W. Photobiochem. Photobiophys 1, 43–53 (1979).

    CAS  Google Scholar 

  9. Nultsch, W. & Häder, M. Ber. dt. bot. Ges. 91, 441–453 (1978).

    Google Scholar 

  10. Sperling, W. & Schims, A. Biophys. Struct. Mechanism 6, 165–169 (1980).

    Article  CAS  Google Scholar 

  11. Koiwai, O. & Hayashi, H. J. Biochem. 86, 27–34 (1979).

    CAS  PubMed  Google Scholar 

  12. Glagolev, A. N. 12th FEBS Meet. Abstr. N 1867 (1978).

  13. Glagolev, A. N. J. theor. Biol. 82, 171–185 (1980).

    Article  CAS  Google Scholar 

  14. Clayton, R. K. Arch. Mikrobiol. 29, 189–212 (1958).

    Article  CAS  Google Scholar 

  15. Harayama, S. & Iino, T. J. Bact. 131, 34–41 (1977).

    CAS  PubMed  Google Scholar 

  16. Spudich, J. L. & Koshland, D. E. Jr, Proc. natn. Acad. Sci. U.S.A. 72, 710–713 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Belyakova, T. N., Glagolev, A. N. & Skulachev, V. P. Biokhimiya 41, 1478–1483 (1976).

    Google Scholar 

  18. Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M. & van der Drift, C. A. Proc. natn. Acad. Sci. U.S.A. 74, 3060–3064 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Matsuura, S., Shioim, J.-I. & Imme, Y. FEBS Lett. 82, 187–190 (1977).

    Article  CAS  Google Scholar 

  20. Glagolev, A. N. & Skulachev, V. P. Nature 272, 280–282 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Dancshazy, Zh., Drachev, L. A., Ormos, P., Nagy, K. & Skulachev, V. P. FEBS Lett. 96, 59–63 (1978).

    Article  CAS  Google Scholar 

  22. Wagner, G., Geissler, G., Linhardt, R., Mollwo, A. & Vonhof, A. in Plant Membrane Transport (eds Spanswick, R. M. et al.) 641–644 (Elsevier, 1980).

    Google Scholar 

  23. Wagner, G., Hartmann, R. & Oesterhelt, D. Eur. J. Biochem. 89, 169–179 (1978).

    Article  CAS  Google Scholar 

  24. Brown, I. I. thesis, Univ. Moscow (1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baryshev, V., Glagolev, A. & Skulachev, V. Sensing of ΔμH+ in phototaxis of Halobacterium halobium. Nature 292, 338–340 (1981). https://doi.org/10.1038/292338a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292338a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing