Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An Lyt differentiated thymocyte subpopulation detected by flow microfluorometry

Abstract

DATA on the T-cell antigens, Lyt 1, 2, 3 (refs 1, 2), relating to functional T-cell subsets, suggest that some peripheral T cells express restricted Lyt phenotypes, that is, Lyt 1+23 or Lyt 123+ (ref. 3). Evidence has been presented showing that two major subpopulations of lymphocytes, Lyt 1+ T cells and Lyt 23+ T cells, are committed to particular lines of functional differentiation in the immune response before encountering exogenous antigen in peripheral lymphoid tissue4,5. It has been suggested that the two major subpopulations representing T-cell help (Lyt 1+) and T-cell cytotoxicity or suppression (Lyt 23+) arise in the periphery from peripheral Lyt 123+ cells6. Recent studies have concluded that as stem cells mature in the thymus, the thymic epithelium is important in determining which H–2 specificities the maturing T cells are able to recognise as self7. Previous cytotoxicity data have been interpreted as indicating that Lyt 1, 2, 3 antigens are expressed on each of most if not all, mouse thymocytes; that is, that most thymocytes are Lyt 123+ (refs 1–4, 8–10). However, the data presented here suggest that the commitment to differentiation of the Lyt 1+ or the Lyt 123+ phenotype, and thus presumably the relevant functional differentiation occurs before cell migration from the thymus. Using flow microfluorometry (FMF) and anti-Lyt antisera, we demonstrate a normal thymocyte subpopulation which is not expressing Lyt 2 or Lyt 3 antigens (Lyt 1+23). This subpopulation represents a significant constant proportion (10%) of normal thymocytes which is markedly increased following in vivo cortisone treatment. The data also show that Lyt 1 expression, rather than being decreased on cortisone-resistant thymocytes (CRT), as would have been predicted from previous cytotoxicity data2,8, is expressed in increased amounts on CRT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boyse, E. A., Miyazawa, M., Aoki, T. & Old, L. J. Proc. R. Soc. B170, 175–193 (1968).

    ADS  CAS  Google Scholar 

  2. Boyse, E. A., Itakura, K., Stockert, E., Iritani, C. & Miura, M. Transplantation 11, 351–353 (1971).

    Article  CAS  Google Scholar 

  3. Cantor, H. & Boyse, E. A. Immun. Rev. 33, 105–124 (1977).

    Article  CAS  Google Scholar 

  4. Cantor, H. & Boyse, E. A. J. exp. Med. 141, 1376–1389 (1975).

    Article  CAS  Google Scholar 

  5. Jandinski, J., Cantor, H., Tadakuma, T., Peavy, D. L. & Pierce, C. W. J. exp. Med. 143, 1382–1390 (1976).

    Article  CAS  Google Scholar 

  6. Huber, B., Cantor, H., Shen, F. W. & Boyse, E. A. J. exp. Med. 144, 1128–1133 (1976).

    Article  CAS  Google Scholar 

  7. Zinkernagel, R. M. et al. J. exp. Med. 147, 882–896 (1978).

    Article  CAS  Google Scholar 

  8. Kisielow, P. et al. Nature 253, 219–220 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Mosier, D. E., Mathieson, B. J. & Campbell, P. S. J. exp. Med. 146, 59–73 (1977).

    Article  CAS  Google Scholar 

  10. Kamarack, M. E. & Gottlieb, P. D. J. Immun. 119, 407–415 (1977).

    Google Scholar 

  11. Shen, F-W., Boyse, E. A. & Cantor, H. Immunogenetics 2, 591–595 (1975).

    Article  Google Scholar 

  12. Morse, H. C. III, Neiders, M. E., Lieberman, R., Lawton, A. R. III & Asofsky, R. J. Immun. 118, 1682–1689 (1977).

    CAS  PubMed  Google Scholar 

  13. Mathieson, B. J., Campbell, P. S., Potter, M. & Asofsky, R. J. exp. Med. 147, 1267–1279 (1978).

    Article  CAS  Google Scholar 

  14. Loken, M. R. & Herzenberg, L. A. Ann. N. Y. Acad. Sci. 254, 163–171 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Miller, M. H., Powell, J. I., Sharrow, S. O. & Schultz, A. R. Rev. scient. Instrum. 49, 1137–1142 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Weissman, I. L., Small, M., Fathman, C. G. & Herzenberg, L. A. Fedn Proc. 34, 141–144 (1975).

    CAS  Google Scholar 

  17. Boyse, E. A., Old, L. J. & Stockert, E. Immunopath. Int. Symp. 4th, 23–40 (1965).

  18. Tigelaar, R. E., Gershon, R. K. & Asofsky, R. Cell. Immun. 19, 58–64 (1975).

    Article  CAS  Google Scholar 

  19. Shiku, H. et al. J. exp. Med. 141, 227–241 (1975).

    Article  CAS  Google Scholar 

  20. Schlager, S. I., Ohanian, S. H. & Borsos, T. J. Immun. 120, 463–471 (1978).

    CAS  PubMed  Google Scholar 

  21. Beverley, P. C. L., Woody, J., Dunkley, M., Feldman, M. & McKenzie, I. Nature 262, 495–497 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MATHIESON, B., SHARROW, S., CAMPBELL, P. et al. An Lyt differentiated thymocyte subpopulation detected by flow microfluorometry. Nature 277, 478–480 (1979). https://doi.org/10.1038/277478a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/277478a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing