Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laminated fabrication of polymeric photovoltaic diodes

Abstract

Photoexcited electron transfer between donor and acceptor molecular semiconductors provides a method of efficient charge generation following photoabsorption, which can be exploited in photovoltaic diodes1,2,3. But efficient charge separation and transport to collection electrodes is problematic, because the absorbed photons must be close to the donor–acceptor heterojunction, while at the same time good connectivity of the donor and acceptor materials to their respective electrodes is required. Mixtures of acceptor and donor semiconducting polymers3,4 (or macromolecules5) can provide phase-separated structures which go some way to meeting this requirement, providing high photoconductive efficiencies. Here we describe two-layer polymer diodes, fabricated by a lamination technique followed by controlled annealing. The resulting structures provide good connectivity to the collection electrodes, and we achieve a short-circuit photovoltaic quantum efficiency of up to 29% at optimum wavelength, and an overall power conversion efficiency of 1.9% under a simulated solar spectrum. Given the convenience of polymer processing, these results indicate a promising avenue towards practical applications for such devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures and device structure.
Figure 2: Optical properties.
Figure 3: Current–voltage characteristics.
Figure 4: Effect of light intensity.
Figure 5: Tapping-mode AFM images.

Similar content being viewed by others

References

  1. Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Halls, J. J. M., Pichler, K., Friend, R. H., Moratti, S. C. & Holmes, A. B. Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60heterojunction photovoltaic cell. Appl. Phys. Lett. 68, 3120–3122 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Halls, J. J. M.et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Yu, G. & Heeger, A. J. Charge separation and photovoltaic conversion in polymer composites with internal donor-acceptor heterojunctions. J. Appl. Phys. 78, 4510–4515 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Burroughes, J. H.et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Willander, M., Assadi, A. & Svensson, C. Polymer-based devices their function and characterization. Synth. Met. 57, 4099–4104 (1993).

    Article  CAS  Google Scholar 

  8. Partridge, A. C., Harris, P. & Andrews, M. K. High-sensitivity conducting polymer sensors. Analyst 121, 1349–1353 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Yu, G. & Heeger, A. J. High efficiency photonic devices made with semiconducting polymers. Synth. Met. 85, 1183–1186 (1987).

    Article  Google Scholar 

  10. Friend, R. H.et al. Electronic excitations in luminescent conjugated polymers. Solid State Commun. 102, 249–258 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Tada, K., Onoda, M., Zakhidov, A. A. & Yoshino, K. Characteristics of poly(p-pyridyl vinylene)/poly(3-alkylthiophene) heterojunction photocell. Jpn. J. Appl. Phys. Pt2-Lett. 36, L306–L309 (1997).

    Article  CAS  Google Scholar 

  12. Takahashi, K.et al. Enhanced quantum yield in porphyrin/electron-donor double-layer solar cells. Solar Energy Mater. Solar Cells 45, 127–139 (1997).

    Article  Google Scholar 

  13. Yoshino, K., Tada, K., Fujii, A., Conwell, E. M. & Zakhidov, A. A. Novel photovoltaic devices based on donor-acceptor molecular and conducting polymer systems. IEEE Trans. Electron. Devices 44, 1315–1324 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Roman, L. S., Andersson, M. R., Yohannes, T. & Inganäs, O. Photodiode performance and nanostructure of poly(thiophene)/C60blends. Adv. Mater. 9, 1164–1168 (1997).

    Article  CAS  Google Scholar 

  15. Yang, C. Y. & Heeger, A. J. Morphology of composites of semiconducting polymers mixed with C60. Synth. Met. 83, 85–88 (1996).

    Article  CAS  Google Scholar 

  16. Moratti, S. C.et al. High electron-affinity polymers for LEDs. Synth. Met. 71, 2117–2120 (1995).

    Article  CAS  Google Scholar 

  17. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H. & Holmes, A. B. Efficient polymer-based light-emitting diodes based on polymers with high electron affinities. Nature 365, 628–630 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Baigent, D. R.et al. Light-emitting diodes fabricated with conjugated polymers—recent progress. Synth. Met. 67, 3–10 (1994).

    Article  CAS  Google Scholar 

  19. Andersson, M. R.et al. Electroluminescence from substituted poly(thiophenes)—from blue to near-infrared. Macromolecules 28, 7525–7529 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Berggren, M.et al. Thermal control of near-infrared and visible electroluminescence in alkyl-phenyl substituted polythiophenes. Appl. Phys. Lett. 65, 1489–1491 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Andersson, M. R.et al. Regioselective polymerization of 3-(4-octylphenyl)thiophene with FeCl3. Macromolecules 27, 6503–6506 (1994).

    Article  ADS  CAS  Google Scholar 

  22. de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  CAS  Google Scholar 

  23. Granström, M.et al. Self-organizing polymer films—a route to novel electronic devices based on conjugated polymers. Supramol. Sci. 4, 27–34 (1997).

    Article  Google Scholar 

  24. O'Regan, B. & Grätzel, M. Alow-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films. Nature 353, 737–740 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Engineering and Physical Sciences Research Council, the European Commission (TMR Marie Curie fellowship and TMR Network SELOA), and from CNPq, Brazilian government, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granström, M., Petritsch, K., Arias, A. et al. Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257–260 (1998). https://doi.org/10.1038/26183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26183

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing