Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of cytochrome c nitrite reductase

Abstract

The enzyme cytochrome c nitrite reductase catalyses the six-electron reduction of nitrite to ammonia as one of the key stepsin the biological nitrogen cycle1, where it participates inthe anaerobic energy metabolism of dissimilatory nitrate ammonification2. Here we report on the crystal structure of this enzyme from the microorganism Sulfurospirillum deleyianum, which we solved by multiwavelength anomalous dispersion methods. We propose a reaction scheme for the transformation of nitrite based on structural and spectroscopic information. Cytochrome c nitrite reductase is a functional dimer, with 10 close-packed haem groups of type c and an unusual lysine-coordinated high-spin haem at the active site. By comparing the haem arrangement of this nitrite reductase with that of other multihaem cytochromes, we have been able to identify a family of proteins in which the orientation of haem groups is conserved whereas structure and function are not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nitrite reductase dimer.
Figure 2: Haem arrangement.
Figure 3: The active site of the enzyme.
Figure 4: The active-site channel.
Figure 5: Comparison between nitrite reductase (NiR) and hydroxylamine oxidoreductase (HAO).

Similar content being viewed by others

References

  1. Berks, B. C., Ferguson, S. J., Moir, J. W. B. & Richardson, D. J. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta—Bioenergetics 1232, 97–173 (1995).

    Article  Google Scholar 

  2. Cole, J. A. & Brown, C. M. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiol. Lett. 7, 65–72 (1980).

    Article  CAS  Google Scholar 

  3. Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cole, J. A. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136, 1–11 (1996).

    Article  CAS  Google Scholar 

  6. Liu, M. C. & Peck, H. D. J. The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. J. Biol. Chem. 256, 13159–13164 (1981).

    CAS  PubMed  Google Scholar 

  7. Liu, M.-C., Liu, M.-Y., Payne, W. J., Peck, H. D. J & LeGall, J. Wolinella succinogenes nitrite reductase: purification and properties. FEMS Microbiol. Lett. 19, 201–206 (1983).

    Article  CAS  Google Scholar 

  8. Schroeder, I.et al. The membranous nitrite reductase involved in the electron transport of Wolinella succinogenes. Arch. Microbiol. 140, 380–386 (1985).

    Article  CAS  Google Scholar 

  9. Blackmore, R., Roberton, A. M. & Brittain, T. The purification and some equilibrium properties of the nitrite reductase of the bacterium Wolinella succinogenes. Biochem. J. 233, 547–552 (1986).

    Article  CAS  Google Scholar 

  10. Schumacher, W. & Kroneck, P. M. H. Dissimilatory hexaheme c nitrite reductase of “Spirillum” strain 5175: purification and properties. Arch. Microbiol. 156, 70–74 (1991).

    Article  CAS  Google Scholar 

  11. Schumacher, W., Hole, U. & Kroneck, P. M. H. Ammonia-forming cytochrome c nitrite reductase from Sulfurospirillum deleyianum is a tetraheme protein: new aspects of the molecular composition and spectroscopic properties. Biochem. Biophys. Res. Commun. 205, 911–916 (1994).

    Article  CAS  Google Scholar 

  12. Schumacher, W., Neese, F., Hole, U. & Kroneck, P. M. H. in Transition Metals in Microbial Metabolism (eds Winkelmann, G. & Carrano, C. J.) 329–356 (Harwood Academic, Amsterdam, (1997).

    Google Scholar 

  13. Darwin, A.et al. Regulation and sequence of the structural gene for cytochrome c 552from Escherichia coli : not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol. Microbiol. 9, 1255–1265 (1993).

    Article  CAS  Google Scholar 

  14. Eaves, D. J.et al. Involvement of products of the nrfEFG genes in the covalent attachment of haem c to a novel cysteine–lysine motif in the cytochrome c 552nitrite reductase from Escherichia coli. Mol. Microbiol. 28, 205–216 (1998).

    Article  CAS  Google Scholar 

  15. Moreno, C.et al. Electrochemical studies of the hexaheme nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. Eur. J. Biochem. 212, 79–86 (1993).

    Article  CAS  Google Scholar 

  16. Strehlitz, B.et al. Anitrite sensor based on a highly sensitive nitrite reductase mediator-coupled amperometric detection. Anal. Chem. 68, 807–816 (1996).

    Article  CAS  Google Scholar 

  17. Einsle, O., Schumacher, W., Kurun, E., Nath, U. & Kroneck, P. M. H. in Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation (eds Canters, G. W. & Vijgenboom, E.) 197–208 (Kluwer Academic, Dordrecht, (1998).

    Book  Google Scholar 

  18. Godden, J. W.et al. The 2.3 å X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 253, 438–442 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Fülöp, V., Moir, J. W. B., Ferguson, S. J. & Hajdu, J. The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd 1. Cell 81, 369–377 (1995).

    Article  Google Scholar 

  20. Hussain, H., Grove, J., Griffiths, L., Busby, S. & Cole, J. Aseven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol. Microbiol. 12, 153–163 (1994).

    Article  CAS  Google Scholar 

  21. Williams, P. A.et al. Haem–ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature 389, 406–412 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Igarashi, N., Moriyama, H., Fujiwara, T., Fukumori, Y. & Tanaka, N. The 2.8 å structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea. Nature Struct. Biol. 4, 276–284 (1997).

    Article  CAS  Google Scholar 

  23. Iverson, T. M.et al. Heme packing motifs revealed by the crystal structure of the tetraheme cytochrome c 554from Nitrosomonas europaea. Nature Struct. Biol. 5, 1005–1012 (1998).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1996).

    Article  Google Scholar 

  25. No. 4. Collaborative Computational Project No. 4. The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  26. La Fortelle, E. D., Irwin, J. J. & Bricogne, G. SHARP: A maximum-likelihood heavy-atom parameter refinement and phasing program for the MIR and MAD methods. Crystallogr. Comput. 7, 1–9 (1997).

    Google Scholar 

  27. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F-1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  28. Brünger, A. T. X-PLOR Version 3.1. A system for Crystallography and NMR (Yale Univ. Press, New Haven,, CT, (1992).

    Google Scholar 

  29. Engh, R. A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. D 4, 392–400 (1991).

    Article  Google Scholar 

  30. Brünger, A. T.et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Volkswagenstiftung (P.K.), Deutsche Forschungsgemeinschaft (P.K.), Fonds der Chemischen Industrie (P.K.), EU-Biotech Project (O.E., A.M., R.H.) and the European Network MASIMO in Human Capital and Mobility (P.K., A.M.). We thank N. Pfennig and H.Beinert who initiated this research, and K. Sulger for assistance in the purification of nitrite reductase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Einsle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einsle, O., Messerschmidt, A., Stach, P. et al. Structure of cytochrome c nitrite reductase. Nature 400, 476–480 (1999). https://doi.org/10.1038/22802

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22802

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing