Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electroluminescence in conjugated polymers

Abstract

Research in the use of organic polymers as the active semiconductors in light-emitting diodes has advanced rapidly, and prototype devices now meet realistic specifications for applications. These achievements have provided insight into many aspects of the background science, from design and synthesis of materials, through materials fabrication issues, to the semiconductor physics of these polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of some molecular semiconductors that have been used in thin-film electroluminescent devices.
Figure 2: Polymers used in electroluminescent diodes.
Figure 3: Structure and schematic energy-level diagram of a single-layer polymer electroluminescent diode.
Figure 4: Photoluminescence spectra from PPV.
Figure 5: Current density and light output versus drive voltage for green-emitting polymer LEDs based on polyfluorene26.
Figure 6: Energy levels for electroluminescent diodes.
Figure 7: Schematic representation of pathways for singlet decay as well as triplet excitation and decay.

Similar content being viewed by others

References

  1. Pope, M., Kallmann, H. & Magnante, P. Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042–2043 (1963).

    Article  ADS  CAS  Google Scholar 

  2. Helfrich, W. & Schneider, W. G. Recombination radiation in anthracene crystals. Phys. Rev. Lett. 14, 229–231 (1965).

    Article  ADS  CAS  Google Scholar 

  3. Tang, C. W. & Van Slyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Adachi, C., Tsutsui, T. & Saito, S. Organic electroluminescent device having a hole conductor as an emitting layer. Appl. Phys. Lett. 55, 1489–1491 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Garnier, F., Hajlaoui, R., Yassar, A. & Srivastava, P. All-polymer field-effect transistor realized by printing techniques. Science 265, 1684–1686 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ostoja, P. et al. Electrical characteristics of field-effect transistors formed with ordered alpha-sexithienyl. Synth. Met. 54, 447–452 (1993).

    Article  CAS  Google Scholar 

  8. Torsi, L., Dodabalapur, A., Rothberg, L. J., Fung, A. W. P. & Katz, H. E. Intrinsic transport-properties and performance limits of organic field-effect transistors. Science 272, 1462–1464 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yang, Y. & Heeger, A. J. Anew architecture for polymer transistors. Nature 372, 344–346 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Brown, A. R., Pomp, A., Hart, C. M. & Deleeuw, D. M. Logic gates made from polymer transistors and their use in ring oscillators. Science 270, 972–974 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Sirringhaus, H., Tessler, N. & Friend, R. H. Integrated optoelectronic circuits based on conjugated polymers. Science 280, 1741–1744 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Granström, M. et al. Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257–260 (1998).

    Article  ADS  Google Scholar 

  14. Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Burn, P. L. et al. Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning. Nature 356, 47–49 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H. & Holmes, A. B. Efficient polymer-based light-emitting diodes based on polymers with high electron affinities. Nature 365, 628–630 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Braun, D. & Heeger, A. J. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58, 1982–1984 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Gustafsson, G. et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477–479 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Greenham, N. C. & Friend, R. H. in Solid State Physics (eds Ehrenreich, H. & Spaepen, F. A.) 2–150 (Academic, San Diego, USA, (1995)).

    Google Scholar 

  20. Salbeck, J. Electroluminescence with Organic Compounds. Ber. Bunsenges. Phys. Chem. 100, 1667–1677 (1996).

    Article  CAS  Google Scholar 

  21. Sheats, J. R. et al. Organic electroluminescent devices. Science 273, 884–888 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Kraft, A., Grimsdale, A. C. & Holmes, A. B. Electroluminescent conjugated polymers—seeing polymers in a new light. Angew. Chem. Int. End Engl. 37, 402–428 (1998).

    Article  Google Scholar 

  23. Grüner, J., Cacialli, F. & Friend, R. H. Emission enhancement in single-layered conjugated polymer microcavities. J. Appl. Phys. 80, 207–215 (1996).

    Article  ADS  Google Scholar 

  24. Liedenbaum, C., Croonen, Y., van de Weijer, P., Vleggaar, J. & Schoo, H. Low voltage operation of large area polymer LEDs. Synth. Met. 91, 109–111 (1997).

    Article  CAS  Google Scholar 

  25. Spreitzer, H. et al. Soluble phenyl-substituted PPVs—New materials for highly efficient polymer LEDs. Adv. Mater. 10, 1340–1344 (1998).

    Article  CAS  Google Scholar 

  26. Lacey, D. High-efficiency polymer light-emitting diodes. 9th International Workshop on Inorganic and Organic Electroluminesence, Oregon, Bend, USA, September 13–17, (1998). See also 〈http://www.cdtltd.co.uk/〉

  27. Brown, A. R. et al. Poly(p-phenylene vinylene) light-emitting diodes: enhanced electroluminescence efficiency through charge carrier confinement. Appl. Phys. Lett. 61, 2793–2795 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Salaneck, W. R. & Brédas, J. L. The metal-on-polymer interface in polymer light-emitting-diodes. Adv. Mater. 8, 48–52 (1996).

    Article  CAS  Google Scholar 

  29. Salaneck, W. R., Stafström, S. & Brédas, J. L. Conjugated Polymer Surfaces and Interfaces (Cambridge Univ. Press, (1996)).

    Book  Google Scholar 

  30. Brédas, J. L. Conjugated polymers and oligomers—designing novel materials using a quantum-chemical approach. Adv. Mater. 7, 263–274 (1995).

    Article  Google Scholar 

  31. Johansson, N. et al. Astudy of the ITO-on-PPV interface using photoelectron spectroscopy. Synth. Met. 92, 207–211 (1998).

    Article  CAS  Google Scholar 

  32. Logdlund, M. & Brédas, J. L. Theoretical-studies of the interaction between aluminum and poly(p-phenylenevinylene) and derivatives. J. Chem. Phys. 101, 4357–4364 (1994).

    Article  ADS  CAS  Google Scholar 

  33. Dannetun, P. et al. Interface formation between poly(2,5-diheptyl-p-phenylenevinylene) and calcium—implications for light-emitting diodes. Synth. Met. 67, 133–136 (1994).

    Article  CAS  Google Scholar 

  34. Gao, Y., Park, K. T. & Hsieh, B. R. Interface formation of Ca with poly(p-phenylene vinylene). J. Appl. Phys. 73, 7894–7899 (1993).

    Article  ADS  CAS  Google Scholar 

  35. Hung, L. S., Tang, C. W. & Mason, M. G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70, 152–154 (1997).

    Article  ADS  CAS  Google Scholar 

  36. Bröms, P., Birgersson, J., Johansson, N., Logdlund, M. & Salaneck, W. R. Calcium electrodes in polymer LEDs. Synth. Met. 74, 179–181 (1995).

    Article  Google Scholar 

  37. Hayashi, S., Etoh, H. & Saito, S. Electroluminescence of perylene films with a conducting polymer as an anode. Jpn J. Appl. Phys. 25, 773–775 (1986).

    Article  ADS  Google Scholar 

  38. Nakano, T., Doi, S., Noguchi, T., Ohnishi, T. & Iyechika, Y. Organic electroluminescent device.US Patent 5,317,169 ((1994)).

  39. Yang, Y. & Heeger, A. J. Polyaniline as a transparent electrode for polymer light-emitting diodes: lower operating voltage and higher efficiency. Appl. Phys. Lett. 64, 1245–1247 (1994).

    Article  ADS  CAS  Google Scholar 

  40. Karg, S., Scott, J. C., Salem, J. R. & Angelopoulos, M. Increased brightness and lifetime of polymer light-emitting-diodes with polyaniline anodes. Synth. Met. 80, 111–117 (1996).

    Article  CAS  Google Scholar 

  41. Carter, J. C. et al. Operating stability of light-emitting polymer diodes based on poly(p-phenylene vinylene). Appl. Phys. Lett. 71, 34–36 (1997).

    Article  ADS  CAS  Google Scholar 

  42. Pei, Q. B., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical-cells. Science 269, 1086–1088 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. de Mello, J. C., Tessler, N., Graham, S. C. & Friend, R. H. Ionic space-charge effects in polymer light-emitting diodes. Phys. Rev. B 57, 12951–12963 (1998).

    Article  ADS  CAS  Google Scholar 

  44. Gao, J., Yu, G. & Heeger, A. J. Polymer light-emitting electrochemical cells with frozen p-i-n junction. Appl. Phys. Lett. 71, 1293–1295 (1997).

    Article  ADS  CAS  Google Scholar 

  45. Campbell, I. H., Hagler, T. W., Smith, D. L. & Ferraris, J. P. Direct measurement of conjugated polymer electronic excitation-energies using metal/polymer/metal structures. Phys. Rev. Lett. 76, 1900–1903 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Marks, R. N., Bradley, D. D. C., Jackson, R. W., Burn, P. L. & Holmes, A. B. Charge injection and transport in poly(p-phenylene vinylene) light-emitting-diodes. Synth. Met. 57, 4128–4133 (1993).

    Article  CAS  Google Scholar 

  47. Parker, I. D. Carrier tunneling and device characteristics in polymer light-emitting-diodes. J. Appl. Phys. 75, 1656–1666 (1994).

    Article  ADS  CAS  Google Scholar 

  48. Blom, P. W. M., De Jong, M. J. M. & Vleggaar, J. J. M. Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68, 3308–3310 (1996).

    Article  ADS  CAS  Google Scholar 

  49. Davids, P. S., Kogan, S. M., Parker, I. D. & Smith, D. L. Charge injection in organic light-emitting-diodes—tunneling into low mobility materials. Appl. Phys. Lett. 69, 2270–2272 (1996).

    Article  ADS  CAS  Google Scholar 

  50. Conwell, E. M. & Wu, M. W. Contact injection into polymer light-emitting diodes. Appl. Phys. Lett. 70, 1867–1869 (1997).

    Article  ADS  CAS  Google Scholar 

  51. Bassler, H. Injection, transport and recombination of charge carriers in organic light-emitting diodes. Polym. Adv. Technol. 9, 402–418 (1998).

    Article  ADS  CAS  Google Scholar 

  52. Blom, P. W. M., de Long, M. J. & van Munster, M. G. Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys. Rev. B 55, 1–3 (1997).

    Article  Google Scholar 

  53. Blom, P. W. M., de Jong, M. J. M. & Breedijk, S. Temperature dependent electron-hole recombination in polymer light-emitting diodes. Appl. Phys. Lett. 71, 930–932 (1997).

    Article  ADS  CAS  Google Scholar 

  54. Tang, C. W., Van Slyke, S. A. & Chen, C. H. Electroluminescence of doped organic thin films. J. Appl. Phys. 65, 3610–3616 (1989).

    Article  ADS  CAS  Google Scholar 

  55. Shi, J. M. & Tang, C. W. Doped organic electroluminescent devices with improved stability. Appl. Phys. Lett. 70, 1665–1667 (1997).

    Article  ADS  CAS  Google Scholar 

  56. Baigent, D. R. et al. Light-emitting diodes fabricated with conjugated polymers—recent progress. Synth. Met. 67, 3–10 (1994).

    Article  CAS  Google Scholar 

  57. Becker, H., Burns, S. E. & Friend, R. H. The effect of metal films on the photoluminescence and electroluminescence of conjugated polymers. Phys. Rev. B 56, 1893–1905 (1997).

    Article  ADS  CAS  Google Scholar 

  58. Scott, J. C., Karg, S. & Carter, S. A. Bipolar charge and current distributions in organic light-emitting diodes. J. Appl. Phys. 82, 1454–1460 (1997).

    Article  ADS  CAS  Google Scholar 

  59. Swanson, L. S. et al. Electroluminescence-detected magnetic-resonance study of polyparaphenylenevinylene (PPV)-based light-emitting diodes. Phys. Rev. B 46, 15072–15077 (1992).

    Article  ADS  CAS  Google Scholar 

  60. Brown, A. R. et al. Optical spectroscopy of triplet excitons and charged excitations in poly(p-phenylenevinylene) light-emitting diodes. Chem. Phys. Lett. 210, 61–66 (1993).

    Article  ADS  CAS  Google Scholar 

  61. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  ADS  CAS  Google Scholar 

  62. Cleave, V. M., Yahioglu, G., Le Barny, P., Friend, R. H. & Tessler, N. Harvesting of singlet and triplet energy in polymer LEDs. Adv. Mater. (in the press).

  63. Soos, Z. G., Galvao, D. S. & Etemad, S. Fluorescence and excited-state structure of conjugated polymers. Adv. Mater. 6, 280–287 (1994).

    Article  CAS  Google Scholar 

  64. Chandross, M. et al. Excitons in poly(para-phenylenevinylene). Phys. Rev. B 50, 14702–14705 (1994).

    Article  ADS  CAS  Google Scholar 

  65. Brédas, J. L., Cornil, J. & Heeger, A. J. The exciton binding-energy in luminescent conjugated polymers. Adv. Mater. 8, 447–452 (1996).

    Article  Google Scholar 

  66. Alvarado, S. F., Seidler, P. F., Lidzey, D. G. & Bradley, D. D. C. Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope. Phys. Rev. Lett. 81, 1082–1085 (1998).

    Article  ADS  CAS  Google Scholar 

  67. Greenham, N. C. et al. Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chem. Phys. Lett. 241, 89–96 (1995).

    Article  ADS  CAS  Google Scholar 

  68. Cornil, J., dos Santos, D. A., Crispin, X., Silbey, R. & Brédas, J. L. Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: a quantum-chemical characterization. J. Am. Chem. Soc. 120, 1289–1299 (1998).

    Article  CAS  Google Scholar 

  69. Samuel, I. D. W., Rumbles, G. & Collison, C. J. Efficient interchain photoluminescence in a high-electron-affinity conjugated polymer. Phys. Rev. B 52, 11573–11576 (1995).

    Article  ADS  CAS  Google Scholar 

  70. Rothberg, L. J. et al. Photophysics of phenylenevinylene polymers. Synth. Met. 80, 41–58 (1996).

    Article  CAS  Google Scholar 

  71. Harrison, N. T., Hayes, G. R., Phillips, R. T. & Friend, R. H. Singlet intrachain exciton generation and decay in poly(p-phenylene vinylene). Phys. Rev. Lett. 77, 1881–1884 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Muccini, M. et al. Polarized fluorescence in alpha-sexithienyl single crystal at 4.2 K. J. Chem. Phys. 108, 7327–7333 (1998).

    Article  ADS  CAS  Google Scholar 

  73. Gill, R. E., Meetsma, A. & Hadziioannou, G. Two novel thermotropic liquid-crystalline substituted oligo(p-phenylene-vinylene)s—single-crystal x-ray determination of an all-trans oligomeric PPV. Adv. Mater. 8, 212–218 (1996).

    Article  CAS  Google Scholar 

  74. Chance, R. R., Prock, A. & Silbey, R. in Advances in Chemical Physics (eds Prigogine, I. & Rice, S. A.) 1–65 (Wiley, New York, (1978)).

    Google Scholar 

  75. Tsutsui, T., Takada, N., Saito, S. & Ogino, E. Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure. Appl. Phys. Lett. 65, 1868–1870 (1994).

    Article  ADS  CAS  Google Scholar 

  76. Jordan, R. H., Rothberg, L. J., Dodabalapur, A. & Slusher, R. E. Efficiency enhancement of microcavity organic light-emitting-diodes. Appl. Phys. Lett. 69, 1997–1999 (1996).

    Article  ADS  CAS  Google Scholar 

  77. Fisher, T. A. et al. Electroluminescence from a conjugated polymer microcavity structure. Appl. Phys. Lett. 67, 1355–1357 (1995).

    Article  ADS  CAS  Google Scholar 

  78. Lemmer, U. et al. Microcavity effects in a spin-coated polymer 2-layer system. Appl. Phys. Lett. 66, 1301–1303 (1995).

    Article  ADS  CAS  Google Scholar 

  79. Tessler, N., Denton, G. J. & Friend, R. H. Lasing in conjugated polymer microcavities. Nature 382, 695–697 (1996).

    Article  ADS  CAS  Google Scholar 

  80. Tessler, N., Harrison, N. T. & Friend, R. H. High peak brightness polymer light-emitting diodes. Adv. Mater. 10, 64–68 (1998).

    Article  CAS  Google Scholar 

  81. Lidzey, D. G., Bradley, D. D. C., Alvarado, S. F. & Seidler, P. F. Electroluminescence in polymer films. Nature 386, 135 (1997).

    Article  ADS  CAS  Google Scholar 

  82. Beljonne, D., Shuai, Z., Friend, R. H. & Brédas, J. L. Theoretical investigation of the lowest singlet and triplet states in poly(para phenylene vinylene) oligomers. J. Chem. Phys. 102, 2042–2049 (1995).

    Article  ADS  CAS  Google Scholar 

  83. Wakimoto, T. et al. Stability characteristics of quinacridone and coumarin molecules as guest dopants in the organic LEDs. Synth. Met. 91, 15–19 (1997).

    Article  CAS  Google Scholar 

  84. Hosokawa, C. et al. Organic multi-color electroluminescence display with fine pixels. Synth. Met. 91, 3–7 (1997).

    Article  CAS  Google Scholar 

  85. Miyaguchi, S. et al. OLED full-color passive matrix display. 9th International Workshop on Inorganic and Organic Electroluminesence, Oregon, Bend, USA, September 13–17, (1998).

  86. Scurlock, R. D., Wang, B. J., Ogilby, P. R., Sheats, J. R. & Clough, R. L. Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer. J. Am. Chem. Soc. 117, 10194–10202 (1995).

    Article  CAS  Google Scholar 

  87. Xing, K. Z. et al. The interaction of poly(p-phenylene-vinylene) with air. Adv. Mater. 8, 971–974 (1996).

    Article  CAS  Google Scholar 

  88. Burrows, P. E. et al. Reliability and degradation of organic light-emitting devices. Appl. Phys. Lett. 65, 2922–2944 (1994).

    Article  ADS  CAS  Google Scholar 

  89. Hebner, T. R., Wu, C. C., Marcy, D., Lu, M. H. & Sturm, J. C. Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 72, 519–521 (1998).

    Article  ADS  CAS  Google Scholar 

  90. Bharathan, J. & Yang, Y. Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Appl. Phys. Lett. 72, 2660–2662 (1998).

    Article  ADS  CAS  Google Scholar 

  91. Burn, P. L. et al. Precursor route chemistry and electronic properties of poly(1,4-phenylenevinylene), poly(2,5-dimethyl-1,4-phenylenevinylene), and poly(2,5-dimethoxy-1,4-phenylenevinylene). J. Chem. Soc. Perkin Trans 1 3225–3231 (1992).

  92. Remmers, M. et al. The optical, electronic, and electroluminescent properties of novel poly(p-phenylene)-related polymers. Macromolecules 29, 7432–7445 (1996).

    Article  ADS  CAS  Google Scholar 

  93. Scherf, U. & Müllen, K. Asoluble ladder polymer via bridging of functionalised poly(p-phenylene)- precursors. Makromol. Chem. Rapid Commun. 12, 489–797 (1991).

    Article  CAS  Google Scholar 

  94. Yang, Y. et al. Efficient blue polymer light-emitting-diodes from a series of soluble poly(paraphenylene)s. J. Appl. Phys. 79, 934–939 (1996).

    Article  ADS  CAS  Google Scholar 

  95. Birgerson, J. et al. Efficient blue-light emitting devices from conjugated polymer blends. Adv. Mater. 8, 982–985 (1996).

    Article  CAS  Google Scholar 

  96. Klarner, G., Davey, M. H., Chen, W. D., Scott, J. C. & Miller, R. D. Colorfast blue-light-emitting random copolymers derived from di-n- hexylfluorene and anthracene. Adv. Mater. 10, 993–999 (1998).

    Article  Google Scholar 

  97. Janietz, S. et al. Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene). Appl. Phys. Lett. 73, 2453–2455 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the European Commission (ESPRIT programme 8013 LEDFOS) for support. Research in Mons is partly supported by the Belgian Federal Government (Pôle d'Attraction Interuniversitaire en Chimie Supramoléculaire et Catalyse), FRNS-FRFC, and an IBM Academic Joint Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friend, R., Gymer, R., Holmes, A. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999). https://doi.org/10.1038/16393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/16393

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing