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Abstract

We apply a computational theory of concept learning
based on Bayesian inference (Tenenbaum, 1999) to the
problem of learning words from examples. The theory
provides a framework for understanding how people can
generalize meaningfully from just one or a few positive
examples of a novel word, without assuming that words
are mutually exclusive or map only onto basic-level cat-
egories. We also describe experiments with adults and
children designed to evaluate the model.

Introduction

Learning even the simplest names for object categories
presents a diÆcult inference problem (Quine, 1960).
Given a typical example of the word \dog", e.g. Rover,
a black labrador, the possible inferences a learner might
make about the extension of \dog" are endless: all (and
only) dogs, all mammals, all animals, all labradors, all
black labradors, all black things, all running things,
this individual animal (Rover), all dogs plus the Lone
Ranger's horse, and so on. Yet, even children under �ve
can often infer the approximate extension of words like
\dog" given only a few relevant examples of how they
can be used, and no systematic evidence of how words
are not to be used (Carey, 1978; Markman, 1989; Regier,
1996). How do they do it?
One in
uential proposal has been that people come

to the task of word learning equipped with strong prior
knowledge about the kinds of viable word meanings
(Carey, 1978; Clark, 1987; Markman, 1989), allowing
them to rule out a priori the many logically possible
but unnatural extensions of a word. For learning nouns,
one of the most basic constraints is the taxonomic as-

sumption, that new words refer to taxonomic classes,
typically in a tree-structured hierarchy of natural kind
categories (Markman, 1989). Given the one example of
\dog" above, the taxonomic assumption would rule out
the subsets of all black things, all running things, and
all dogs plus the Lone Ranger's horse, but would still
leave a great deal of ambiguity as to the appropriate
level of generalization in the taxonomic tree that in-
cludes labradors, dogs, mammals, animals, and so on.
Other, stronger constraints try to reduce this ambiguity,
at the cost of dramatically oversimplifying the possible
meanings of words. Under the mutual exclusivity con-
straint, the learner assumes that there is only one word
that applies to each object (Markman, 1989). This helps
to circumvent the problem of learning without negative
evidence, by allowing the inference that each positive ex-
ample of one word is a negative example of every other

word. Having heard Sox called \cat" as well as Rover
called \dog", we can rule out any subset including both
Rover and Sox (e.g. mammals, animals) as the exten-
sion of \dog". But some uncertainty in how far to gen-
eralize always remains: does \dog" refer to all dogs, all
labradors, all black labradors, or just Rover himself?
Inspired by the work of Rosch et al. (1976), Markman

(1989) suggested the even stronger assumption that a
new word maps not to just any level in a taxonomy,
but to an intermediate or basic level. Basic-level cate-
gories are intermediate nodes in a taxonomic tree that
maximize many di�erent indices of category utility and
are widely recognized throughout a culture (Rosch et
al., 1976). Whether children really have a bias to map
words onto basic-level kinds is controversial (Callanan et
al., 1994), but it is certainly a plausible proposal. More-
over, the basic-level constraint, together with the taxo-
nomic constraint and mutual exclusivity, actually solves
the induction problem, because each object belongs to
one and only one basic-level category. However, this so-
lution only works for basic-level words like \dog", and
in fact is counterproductive for all the words that do
not map to basic level categories. How do we learn all
the other words we know at superordinate or subordinate
levels? Some experimenters have found that seeing more
than one labeled example of a word may help childern
learn superordinates (Callanan, 1989), but there have
been no systematic theoretical explanations for these
�ndings. Regier (1996) describes a neural network learn-
ing algorithm capable of learning overlapping words from
positive evidence only, using a weakened form of mutual
exclusivity that is gradually strengthed over thousands
of learning trials. However, this model does not address
the phenomenon of \fast mapping" (Carey, 1978) { the
meaningful generalizations that people make from just
one or a few examples of a novel word { that is arguably
the most remarkable feat of human word learning.
To sum up the problem: taking the taxonomic, mu-

tual exclusivity, and basic-level assumptions literally as
hard-and-fast constraints would solve the problem of in-
duction for one important class of words, but at the
cost of making the rest of language unlearnable. Admit-
ting some kind of softer combination of these constraints
seems like a reasonable alternative, but no one has of-
fered a precise account of how these biases should inter-
act with each other and with the observed examples of
a novel word, in order to support meaningful generaliza-
tions from just one or a few examples. This paper takes
some �rst steps in that direction, by describing one possi-
ble learning theory that is up to the task of fast mapping



and applying it to model a simple experimental situa-
tion. Our experiments use real, everyday objects with
an intuitively clear taxonomic organization, but they re-
quire subjects to learn multiple words at di�erent levels
of generality which violate the strict versions of mutual
exclusivity and the basic-level constraint. Our theory
is formulated in terms of Bayesian inference, which al-
lows learners to combine probabilistic versions of a priori

constraints with the statistical structure of the examples
they observe, in order to acquire the sort of rich, multi-
leveled vocabulary typical of natural languages.

The paper is organized as follows. Section 2 describes
our basic word learning experiment and presents data
from adult participants. Section 3 describes the Bayesian
learning theory and its application to modeling the data
in Section 2. Section 4 concludes and discusses some pre-
liminary data from a parallel experiment with children.

Experiments with adult learners

Our initial experiments were conducted with adult learn-
ers, although the studies have been designed to carry
over to preschoolers with minimal modi�cation. The ex-
periment consists of two phases. In the word learning

phase, participants are given one or more examples of
words in a novel language and asked to pick out the other
instances that each word applied to, from a large set of
test objects. In the similarity judgment phase, partici-
pants judge the similarity of pairs of the same objects
used in the �rst phase. The average similarity judg-
ments are then submitted to a hierarchical clustering al-
gorithm, in order to reconstruct a representation of the
taxonomic hypothesis space that people were drawing on
in the word learning phase.

Participants. Participants were 25 students from
MIT and Stanford University, participating for pay or
partial course credit. All participants carried out the
word learning task and the �rst nine also participated in
the similarity judgment phase that followed.

Materials. The stimulus set consisted of digital color
photographs of 45 real objects. This set was structured
hierarchically to mirror, in limited form, the structure
of natural object taxonomies in the world. Objects
were distributed across three di�erent superordinate cat-
egories (animals, vegetables, vehicles) and within those,
many di�erent basic-level and subordinate categories.
The 45 stimuli were divided into a test set of 24 stimuli
and a training set of 21 stimuli.

The training stimuli were grouped into 12 nondisjoint

sets of examples. The �rst three sets contained one ex-
ample each: a dalmatian, a green pepper, or a yellow
truck, representing the three main branches of the mi-
croworld's taxonomy. The remaining nine sets contained
three examples each: one of the three objects from the
single-example sets (the dalmatian, green pepper, or yel-
low truck), along with two new objects that matched the
�rst at either the subordinate, basic, or superordinate
level of the taxonomy. For example, the dalmatian was
paired with two other dalmatians, with two other dogs
(a mutt and a terrier), and with two other animals (a
pig and a toucan) to form three of these nine multiple-

example sets.

The test set consisted of objects matching the labeled
examples at all levels: subordinate (e.g., other dalma-
tians), basic (non-dalmatian dogs), and superordinate
(non-dog animals), as well as many non-matching ob-
jects (vegetables and vehicles). In particular, the test set
always contained exactly 2 subordinate matches (e.g. 2
other dalmatians), 2 basic-level matches (labrador, hush-
puppy), 4 superordinate matches (cat, bear, seal, bee),
and 16 nonmatching objects.

Procedure. Stimuli were presented on a computer
monitor at normal viewing distance. Participants were
told that they were helping a puppet who speaks a di�er-
ent language to pick out the objects he needs. Following
a brief familiarization in which participants saw all 24
of the test objects one at a time, the experiment began
with the word learning phase. This phase consisted of
32 trials in which learners were shown pictures of one or
more labeled examples of a novel monosyllabic word (e.g.
\blick") and were asked to pick out the other \blicks"
from the test set of 24 objects by clicking on-screen with
the mouse. On the �rst three trials, participants saw
only one example of each new word, while on the next
nine trials they saw three examples of each word.1 Sub-
ject to these constraints, the 12 example sets appeared
in a pseudo-random order that counterbalanced the or-
der of example content (animal, vegetable, vehicle) and
example speci�city (subordinate, basic, superordinate)
across participants. The frequencies with which each
test objects was selected by participants when asked to
\pick out the other blicks" were the primary data.

In the similarity judgment phase that followed these
trials, participants were shown pairs of objects from the
main study and asked to rate their similarity on a scale
of 1 to 9. They were instructed to base their ratings on
the same aspects of the objects that were important to
them in making their choices during the main experi-
ment. Similarity judgments were collected for all but six
of the 45 objects used in the word learning experiment;
these six were practically identical to six of the included
objects and were omitted to save time. Each partici-
pant in this phase rated the similarity of all pairs of ob-
jects within the same superordinate class and one-third
of all possible cross-superordinate pairs chosen pseudo-
randomly, for a total of 403 judgments per participant
(executed in random order). Similarity ratings for all
nine participants were averaged together for analysis.

Results and discussion. The results of the word
learning phase are depicted in Figure 1. Figure 1a
presents data collapsed across all category types (ani-
mals, vehicles, and vegetables), while Figures 1b-d show
the data for each category individually. The four plots
in each row correspond to the four di�erent kinds of ex-
ample sets (one, three subordinate, three basic, three su-
perordinate), and the four bars in each plot correspond
to test objects matching the example(s) at each of four
di�erent levels of speci�city (subordinate, basic, super-
ordinate, nonmatching). Bar height (between 0 and 1)

1The last 20 trials used di�erent stimulus combinations to
explore a di�erent question and will not be analyzed here.
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Figure 1: Generalization judgments averaged across categories (a) and broken down into individual categories (b-d).

represents the average probabilities with which partici-
pants chose to generalize to the corresponding kind of
test object. In Figure 1a, asterisks denote probabilities
that are signi�cantly lower than the probabilities to the
immediate left (p < :05, one-tailed paired t-tests (df =
24) with Bonferonni correction for 12 comparisons), in-
dicating signi�cant gradients of generalization.

The �rst plots in each row represent trials in which
only a single labeled example was provided. Across all
three major categories, participants generalized almost
always (97% of trials) to test objects matching the exam-
ple at the subordinate level (e.g., other dalmatians), of-
ten but not always (76% of trials) to basic-level matches
(e.g., non-dalmatian dogs), rarely (9% of trials) to su-
perordinate matches (e.g., non-dog animals), and prac-
tically never (< 1% of trials) to nonmatching test objects
(e.g., vegetables or vehicles). Thus, generalization from
one example appears to fall o� according to a gradient
of exemplar similarity, with a threshold located around
the basic level.

A di�erent pattern emerges in the last three plots of
each row, representing trials on which three labeled ex-
amples were provided. Instead of a gradient of general-
ization decreasing with similarity to the example, there
appears in most cases to be a sharp transition from near-
perfect generalization to near-zero generalization. The
cut-o� occurs at the level of the most speci�c category
containing all three labeled examples. That is, given
three dalmatians as examples of \blicks", participants
generalized to all and only the other dalmatians; given
three dogs, to all and only the dogs, and so on.

Two aspects of these results are consistent with the
existing literature on word learning in children. First,
we found what appears to be a basic-level bias in gen-
eralizing from one example. This interpretation is com-
plicated by the fact that our participants already knew
a very familiar word in English for each of the basic-
level categories used in our study, \pepper", \truck",
and \dog". The tacit knowledge that objects are almost
always named spontaneously at the basic level (Rosch et
al., 1976) may have increased participants' propensity
to map words in a new language onto these basic-level

categories, and this bias could exist over and above any
preference children or adults might have to map words
for unfamiliar objects onto basic-level categories. Sec-
ond, we found that giving participants more than one
example had a dramatic e�ect on how they generalized
to new objects, causing them to select all objects at the
most speci�c taxonomic level spanned by the examples
and no objects beyond that level. This �nding is consis-
tent with developmental studies in which children given
two examples from di�erent basic-level categories were
signi�cantly more likely to generalize to other objects
of the same superordinate category, relative to children
given only a single example (Callanan, 1989).

Our results also di�er from the developmental litera-
ture in important ways. First, we found a qualitative dif-
ference in generalization from one labeled example ver-
sus several labeled examples. While generalization from
a single example decreased according to a gradient of
similarity to the test objects, generalization from three
examples followed more of an all-or-none, threshold pat-
tern. Second, we found that people could use multiple
examples to infer how far to generalize a new word at
any level of speci�city in a multi-level taxonomy of ob-
ject kinds, not just at the basic or superordinate levels.

Figure 2 shows the results of a hierarchical cluster-
ing (\average linkage") analysis applied to participants'
similarity judgments from the second phase of the exper-
iment. Each leaf of the tree corresponds to one object
used in the word learning phase. (For clarity, only ob-
jects in the training set are shown.) Each internal node
corresponds to a cluster of stimuli that are on average
more similar to each other than to other, nearby stimuli.
The height of each node represents the average pairwise
dissimilarity of the objects in the corresponding cluster,
with lower height indicating greater average similarity.
The length of the branch above each node measures how
muchmore similar on average are that cluster's members
to each other than to objects in the next nearest cluster,
i.e., how distinctive that cluster is.

This cluster tree captures in an objective fashion much
of people's intuitive knowledge about this domain of ob-
jects. Each of the main classes underlying the choice of
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Figure 2: Hierarchical clustering of similarity judgments yields a taxonomic hypothesis space for word learning.

stimuli (vegetable, vehicle, animal, pepper, truck, dog,
green pepper, yellow truck, and dalmatian) corresponds
to a node in the tree (marked by a circled number).
Moreover, most of these clusters are highly distinctive,
i.e., well-separated from other clusters by long branches,
as one would expect for the targets of kind terms. Other
naturally \nameable" nodes include cluster #23, con-
taining the tractor, the bulldozer, and the crane, but no
other vehicles, or cluster #33, containing all and only
the mammals. Still other clusters re
ect more subtle
similarities. For example, cluster #18 includes all of the
trucks and also the yellow schoolbus. While the school-
bus does not fall into the class of trucks, it intuitively
comes much closer than any other non-truck object in
the set. This intuitive taxonomy of objects will form
the basis for the formal Bayesian model of fast mapping
described next.

A Bayesian model

We �rst describe the general approach, saving the details
for below. We assume that the learner has access to a
hypothesis space H of possible concepts and a proba-
bilistic model relating hypotheses h 2 H to data X . Let
X = fx(1); : : : ; x(n)g denote a set of n observed examples
of a novel word C. Each hypothesis h can be thought of
as a pointer to some subset of objects in the world that
is a candidate extension for C. The Bayesian learner
evaluates these hypotheses by computing their posterior
probabilities p(hjX), proportional to a product of prior
probabilities p(h) and likelihoods p(X jh):

p(hjX) / p(X jh)p(h) (1)

The prior, along with the structure of the hypothe-
sis space, embodies the learner's pre-existing (though
not necessarily innate) biases, such as the taxonomic or
basic-level assumptions. The likelihood captures the sta-
tistical information inherent in the examples. The poste-

rior re
ects the learner's degree of belief that h is in fact
the true extension of C, given a rational combination
of her observations X with her relevant prior knowledge
about possible word meanings.
The hypothesis space. Tenenbaum (1999) intro-

duced this Bayesian framework for learning simple con-
cepts with hypotheses that could be represented as rect-
angular regions in a multidimensional continuous fea-
ture space. Here we adapt that framework to the task
of word learning, assuming that the hypotheses can be
represented as clusters in a tree-structured taxonomy
(e.g., Figure 2). Such a hypothesis space is clearly
not appropriate for learning all kinds of words, but it
may be a good �rst approximation for learning com-
mon nouns under the taxonomic assumption. Assum-
ing a tree-structured hypothesis space makes the model
more tractable but is by no means a requirement of the
Bayesian framework. In principle, any subset of objects
could be a hypothesis under consideration.
Priors and likelihoods. Both priors and likelihoods

can be de�ned in terms of the geometry of the cluster
tree. The crucial geometrical feature is the height of
node h in the tree, which is scaled to lie between 0 (for
the lowest node) and 1 (for the highest node) and mea-
sures the average dissimilarity of objects within h.
We take the prior p(h) to be proportional to the

branch length separating node h from its parent:

p(h) / height(parent(h))� height(h): (2)

This captures the intuition that more distinctive clusters
are a priori more likely to have distinguishing names.
For example, in Figure 2, the class containing all and
only the dogs (#29) is highly distinctive, but the classes
immediately under it (#27) or above it (#30) are not
nearly as distinctive; accordingly, #29 receives a much
higher prior than #27 (proportional to .181 vs. .028).
The likelihood function comes from assuming that



the observed positive examples are sampled at random
(and independently) from the true concept to be learned.
Imagine that each hypothesis consisted of a �nite set of
K objects. Then the likelihood of picking any one ob-
ject at random from a set of size K would be 1=K, and
for n objects (sampled with replacement), 1=Kn. Hence
set size is crucial for de�ning likelihood. While we do
not have access to the \true" size of the set of all dogs
in the world, or all vegetables, we do have access to a
psychologically plausible proxy, in the average within-
cluster dissimilarity (as measured by cluster height in
Figure 2). Moving up in the tree, the average dissimilar-
ity within clusters increases as they become larger. Thus
equating node height with approximate cluster size, we
have for the likelihood

p(X jh) /

�
1

height(h) + �

�
n

; (3)

if xi 2 h for all i, and 0 otherwise. (We add a small
constant � > 0 to height(h) to keep the likelihood from
going to in�nity at the lowest nodes in the tree (with
height 0). The exact value of � is not critical; we found
best results with � = 0:05.) Equation 3 embodies the size
principle for scoring hypotheses: smaller hypotheses as-
sign greater likelihood than do larger hypotheses to the
same data, and they assign exponentially greater like-
lihood as the number of consistent examples increases.
This captures the intuition that given a dalmatian as
the �rst example of \blick", either all dalmatians or all
dogs seem to be fairly plausible hypotheses for the word's
extension (with a likelihood ratio of 14:08=3:50 � 4 in
favor of just the dalmatians). However, given three dal-
matians as the �rst three examples of \blick", the word
seems much more likely to refer only to dalmatians than
to all dogs (with a likelihood ratio now proportional to
(14:08=3:50)3 � 65 in favor of just the dalmatians).
Generalization. Given these priors and likelihoods,

the posterior p(hjX) follows directly from Bayes' rule
(Equation 1). Finally, the learner must use p(hjX) to
decide how to generalize the word C to new, unlabeled
objects. p(y 2 CjX), the probability that some new
object y belongs to the extension of C given the obser-
vationsX , can be computed by averaging the predictions
of all hypotheses weighted by their posterior probabili-
ties p(hjX):

p(y 2 CjX) =
X
h2H

p(y 2 Cjh)p(hjX): (4)

To evaluate Equation 4, note that p(y 2 Cjh) is simply
1 if y 2 h, and 0 otherwise.
Model results. Figure 3a compares p(y 2 CjX) com-

puted from the Bayesian model with the average gener-
alization data from Figure 1a. The model achieves a rea-
sonable quantitative �t (R2 = :93) and also captures the
main qualitative features of the data: a similarity-like
gradient of generalization given one example, and more
all-or-none, rule-like generalization at the most speci�c
consistent level, given three examples. The main errors
seem to be too little generalization to basic-level matches
given one example or three subordinate examples, and

too much generalization to superordinate matches given
three basic-level examples. All of these errors would
be explained if participants in the word learning task
had an additional basic-level bias that is not captured
in their similarity judgments. Figure 3b shows the �t
of the Bayesian model after adding a bias to the prior
that favors the three basic-level hypotheses. With this
one free parameter, the model now provides an almost
perfect �t to the average data (R2 = :98). Figures 3c
and 3d illustrate respectively the complementary roles
played by the size principle (Equation 3) and hypothe-
sis averaging (Equation 4) in the Bayesian framework.
If instead of the size principle we weight all hypotheses
strictly by their prior, Bayes reduces to a similarity-like
feature matching computation that is much more suited
to the generalization gradients observed given one exam-
ple than to the all-or-none patterns observed after three
examples (R2 = :74 overall). If instead of averaging
hypotheses we choose only the most likely one, Bayes es-
sentially reduces to �nding the most speci�c hypothesis
consistent with the examples. Here, that is a reasonable
strategy after several examples but far too conservative
given just one example (R2 = :78 overall). Similarity-
based models of category learning that incorporate selec-
tive attention to di�erent stimulus attributes (Kruschke,
1992) could in principle accomodate these results, but
not without major modi�cation. These models typically
rely on error-driven learning algorithms, which are not
capable of learning from just one or a few positive exam-
ples and no negative examples, and low-dimensional spa-
tial representations of stimuli, which are not well-suited
to representing a broad taxonomy of object kinds.

Conclusions and future directions

Research on word learning has often pitted rule-based
accounts (Clark, 1973) against similarity-based accounts
(Jones & Smith, 1993), or rationalist accounts (Bloom,
1998) versus empiricist accounts (Quine, 1960). In con-
trast, our work suggests both a need and a means to
move beyond some of these classic dichotomies, in order
to explain how people learn a hierarchical vocabulary of
words for object kinds given only a few random positive
examples of each word's referents. Rather than �nd-
ing signs of exclusively rule- or similarity-based learn-
ing, we found more of a transition, from graded gener-
alization after only one example had been observed to
all-or-none generalization after three examples had been
observed. While special cases of the Bayesian framework
corresponding to pure similarity or rule models could
accomodate either extremes of this behavior, only the
full Bayesian model is capable of modeling the transi-
tion from similarity-like to rule-like behavior observed on
this task. The Bayesian framework also brings together
theoretical constraints on possible word meanings, such
as the taxonomic and basic-level biases, with statistical
principles more typically associated with the empiricist
tradition, such as the size principle and hypothesis aver-
aging. No one of these factors works without the others.
Constraints provide suÆcient structure in the learner's
hypothesis space and prior probabilities to enable rea-
sonable statistical inferences of word meaning from just
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Figure 3: Predictions of the basic Bayesian model and three variants for the data in Figure 1.

a few random positive examples.
Still, the hardest questions of learning remain un-

solved. Where does the hypothesis space come from?
Are constraints on the hypothesis space learned or in-
nate? In ongoing work, we are exploring how unsuper-
vised learning algorithms might be used to bootstrap a
hypothesis space for supervised concept learning. For
example, can clustering algorithms like the one we used
to construct our taxonomic hypothesis space still be suc-
cessfull when applied to more primitive perceptual repre-
sentations of objects, instead of adult humans' similarity
judgments? Generalizations of the Bayesian framework
also hold some promise as bootstrapping mechanisms,
in virtue of their ability to propagate probabilistic in-
formation from raw data up to increasingly higher levels
of abstraction. Perhaps we begin life with a hypothesis
space of hypothesis spaces { each embodying di�erent
possible constraints on word meanings { and grow into
the most useful ones { those which consistently contain
the best explanations of the word-to-world pairings we
encounter { through the same mechansims of Bayesian
inference used to learn any one novel word.

0.5

1

0.5

1

0.5

1

0.5

1

  3 subordinate1   3 basic    3 superordinateExamples:

Figure 4: Data from child word learners.

We are also working to extend this line of research to
studies of child learners, and to studies of both adults
and children learning words for novel objects. Figure 4
shows some promising pilot data from a study with 4-
year-old children, using familiar objects in a design ap-
proximately parallel to the above adult study. Like the
adults, children given three examples of a novel word
adapt their generalizations to the appropriate level of
speci�city, although their superordinate generalizations
are less consistent. When given just one example, chil-
dren show a gradient of generalization much like the
adults, but with signi�cantly fewer responses at the basic
level and above. If anything, children's overall patterns
of responses look more like the Bayesian model's pre-
dictions without the added basic-level bias (Figure 3a)
than with that added bias (Figure 3b). Consistent with
Callanan et al. (1994), this suggests that a strong basic-
level bias may not be a fundamental building block of

early word learning { at least, not as distinct from the
more general bias in favor of labeling distinctive clusters
that the Bayesian model assumes { but rather develops
later as the child gains experience about how words are
typically used. This issue is one aspect of a broader ques-
tion: to what extent should di�erences between child and
adult word learners be attributed to di�erences in their
hypothesis spaces, probability models (e.g., priors), or
learning algorithms? We hope to answer these questions
as we conduct more extensive studies with child learners.
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