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Abstract
The measure obtained from the Implicit Association Test (IAT; Greenwald et al., 1998. DOI: 
10.1037/0022-3514.74.6.1464) is often used to predict people’s behaviors. However, it has shown 
poor predictive ability potentially because of its typical scoring method (the D score), which is 
affected by the across-trial variability in the IAT data and might provide biased estimates of the 
construct. Linear Mixed-Effects Models (LMMs) can address this issue while providing a Rasch-like 
parametrization of accuracy and time responses. In this study, the predictive abilities of D scores 
and LMM estimates were compared. The LMMs estimates showed better predictive ability than the 
D score, and allowed for in-depth analyses at the stimulus level that helped in reducing the across-
trial variability. Implications of the results and limitations of the study are discussed.
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The Implicit Association Test (IAT; Greenwald et al., 1998) is one of the most used 
measures for the implicit assessment of socio-psychological constructs. The main fields 
of application are in social psychology, where the IAT is often employed to indirectly 
investigate the attitudes towards different social groups. Additionally, the IAT is used to 
assess food and brand preferences (see Epifania et al., 2022a, for a review of the main 
fields of application of the IAT). In both fields, the measure provided by the IAT is 
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used to predict behavioral outcomes, such as intergroup relations (e.g., Dovidio et al., 
2002) or food choice (e.g., Perugini, 2005). However, the IAT has shown poor ability to 
predict behavioral outcomes (e.g., Meissner et al., 2019), potentially because of its typical 
scoring method (i.e., the so-called D score; Greenwald et al., 2003). If the poor ability 
of the IAT to predict behaviors is ascribable to its typical scoring method, the estimates 
obtained with more statistically sound approaches should result in better predictions. 
In this contribution, a Rasch analysis based on Linear Mixed-Effects Models (LMMs) is 
introduced to address the across-trial variability in the IAT data and to obtain reliable 
measures for accurate predictions of behaviors.

The IAT assesses the strength of the associations between targets and evaluative 
dimensions by considering the speed and accuracy with which prototypical exemplars of 
two targets (e.g., Coke and Pepsi images in a Coke-Pepsi IAT) and two evaluative dimen­
sions (Good and Bad attributes) are assigned to their own category in two contrasting 
conditions. In one condition, Coke and Good exemplars are assigned with the same key, 
while Pepsi and Bad exemplars are assigned with the opposite key. In the contrasting 
condition, Pepsi and Good exemplars are assigned with the same key, while Coke and 
Bad exemplars are assigned with the opposite key. The task is expected to be easier (i.e., 
responses should be faster and more accurate) in the condition consistent with one’s 
own automatically activated association. The D score (Greenwald et al., 2003) is usually 
employed to express the IAT effect (i.e., the difference in the performance between the 
two conditions). It is an effect size measure obtained by standardizing the difference 
between the average response time in the two conditions by the standard deviation 
computed on the pooled trials of both conditions.

The IAT effect as expressed by the D score has been found to have poor ability 
to predict behaviors. This can be ascribed to different factors, including the measure 
provided by the D score, the construct assessed by the IAT (Meissner et al., 2019), and 
the type of behavioral outcomes (Perugini, 2005). Additionally, the fully-crossed structure 
of the IAT (Westfall et al., 2014) might compromise the predictive ability of its measure. 
If the fully-crossed design of the IAT and its related sources of dependency are not 
properly addressed, biased estimates are obtained, the importance of experimental effects 
is confused with random noise, and the probability of committing Type I error is inflated 
(Judd et al., 2017; Wolsiefer et al., 2017). Averaging across trials in each associative 
condition, the D score is highly sensitive to the across-trial variability related to stimuli 
heterogeneity, and it cannot address the fully-crossed design of the IAT (Wolsiefer et al., 
2017). This can be accounted for by employing Linear Mixed Effect-Models (LMMs) with 
appropriate random structures. Additionally, LMMs allow for obtaining parametrizations 
from accuracy and log-time responses that are conceptually close to the Rasch (Rasch, 
1960) and the log-normal (van der Linden, 2006) models, respectively. These models 
disentangle the unique contribution of the respondent and the stimulus to the observed 
response, hence providing fine-grained information at both levels.
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Information at the stimulus level allows for investigating the contribution of each 
stimulus to the IAT effect as well as the representativeness of each stimulus. Indeed, 
stimulus representativeness of its own category is a key feature for a correct functioning 
of the IAT (Bluemke & Friese, 2006; Nosek et al., 2005). Selecting the most informative 
and representative stimuli can help in reducing the across-trial variability, and could 
allow for designing better functioning and briefer IATs.

In this study, the predictive abilities of the estimates obtained with LMMs and the 
D score are compared. The predictive abilities of D scores computed on all stimuli and 
D scores computed only on the most (or the least) informative stimuli are compared, 
as well. To these ends, an IAT for the implicit assessment of the chocolate preference 
was used (Chocolate IAT). The most and the least informative stimuli are identified by 
considering the difference in their parameters between conditions (see e.g., Anselmi et 
al., 2013). Stimuli showing a higher difference in their parameters between conditions 
are considered to be more informative than those with a smaller difference in their 
parameters between conditions.

Method

Participants
Seventy-six university students (F = 71.05%, Mean age = 24.02 ± 2.88 years) volunteered 
to take part in the study. Respondents did not receive any incentives for their participa­
tion.

Materials and Procedure
The script used for running the experiment, the stimuli, and the data can be accessed 
at the Supplementary Materials section. Twenty-six attribute stimuli (13 Good and 13 
Bad exemplars) and 7 chocolate images graphically modified to represent either dark 
or milk chocolate (7 Dark and 7 Milk chocolate images) were used. Sixty trials were 
presented in each associative condition (i.e., Dark-Good/Milk-Bad–DGMB–and Milk- 
Good/Dark-Bad–MGDB–conditions). No feedback followed incorrect responses.

The chocolate preferences were explicitly investigated with two items (i.e., How much 
do you like dark chocolate? and How much do you like milk chocolate?) evaluated on a 
6-point Likert-type scale (0—Not at all, 5—Very much). Respondents were asked about 
their food habits and behaviors through 6 items (example item: I am usually on a diet, 
Cronbach’s α = 0.80) rated on a 4-point agreement Likert-type scale (1—Strongly disagree, 
4—Strongly agree). High scores indicate high care for food habits. At the end of the 
experiment, participants were offered with dark or milk chocolate. Their choices were 
registered after they left the laboratory.
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Data Cleaning and D Score
Exclusion criteria based on accuracy (Nosek et al., 2002) and time responses (Greenwald 
et al., 2003) were applied. The IAT was scored with the D4 algorithm (Greenwald et 
al., 2003), which was computed with the online app DscoreApp (Epifania et al., 2020). 
Positive D scores denote a preference for dark chocolate relative to milk chocolate.

Model Specifications
According to the Rasch model (Rasch, 1960), the observed accuracy response of respond­
ent p (p ∈ {1, . . ., P }) to stimulus s (s ∈ {1, . . ., S}) depends on respondent’s ability (i.e., 
the respondent’s ability parameter θ) and stimulus difficulty (i.e., the stimulus difficulty 
parameter b). In the IAT, the higher the ability parameter θ of respondent p, the higher 
the ability of respondent p to perform the categorization task. The higher the difficulty 
parameter b of stimulus s, the lower the probability of s to be assigned to the correct 
category. The probability of a correct response of respondent p to stimulus s depends on 
the distance between respondent and stimulus parameters (i.e., θp−bs). It is larger than .50 
when θp > bs, smaller than .50 when θp < bs, and equal to .50 when θp = bs.

Similar to the Rasch model, in the log-normal model (van der Linden, 2006) the 
observed log-time response depends on the characteristics of the respondent (speed 
parameter τ) and those of the stimulus (time intensity parameter δ). In the IAT case, the 
lower the speed parameter τ of respondent p, the higher the time spent by respondent 
p on the task (i.e., lower speed). The lower the time intensity parameter δ of stimulus s, 
the lower the time respondents spend in responding to stimulus s. The expected log-time 
response is a function of the distance between respondent and stimulus parameters 
(i.e., δs–τp). The expected log-time response is lower than, faster than, and equal to the 
observed log-time response when δs > τp, δs < τp, and δs = τp, respectively.

Rasch-like and log-normal parametrizations can be obtained by using Generalized 
Linear Mixed-Effects Models (GLMMs) with logit link functions applied to accuracy 
responses and Linear Mixed Effects Models (LMMs) applied to log-time responses, re­
spectively. In these applications, respondent and stimulus parameters are summed (i.e., 
θp + bs and δs + τp). This parametrization of the accuracy responses is consistent with 
that of linear test models (LLTM, see e.g., Fischer, 1973; Scheiblechner, 1972). The higher 
the value of stimulus parameter b, the easier stimulus s is (i.e., the higher the number 
of correct responses registered on stimulus s is), such that parameter b is considered as 
an easiness parameter. The lower the value of parameter τ, the faster respondent p is. 
The suitability and usefulness of this approach for analyzing IAT data has already been 
proved (e.g., Epifania et al., 2022b).

Rasch-like and log-normal parametrizations depend on the factors specified as ran­
dom, which account for the variability in the data. The fixed intercept is set at 0 (i.e., 
none of the levels of the fixed slope—the associative condition—is taken as the reference 
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level). Further details on the procedure and on the random structures of the models are 
reported in the Appendix. Table 1 summarizes the Rasch-like and log-normal parameters 
attainable from each model random structure.

Table 1

Rasch-Like and Log-Normal Parametrizations

Rasch-Like Parametrization Log-Normal Parametrization

Model Respondents Stimuli Respondents Stimuli

1 Overall (θp) Overall (bs) Overall (τp) Overall (δs)

2 Overall (θp) Condition–specific (bsc) Overall (τp) Condition–specific (δsc)

3 Condition–specific (θpc) Overall (bs) Condition–specific (τpc) Overall (δs)

Note. p ∈ {1, . . ., P }, s ∈ {1, . . ., S}, c ∈ {1, . . ., C} denote any respondent, stimulus, condition (P, S, and C are the 
number of respondents, stimuli, and conditions, respectively.)

In Model 1, the random intercepts of respondents and stimuli are specified to account 
for the between—respondents and the between—stimuli variabilities across–conditions. 
This model yields overall respondent (θp or τp) and stimulus (bs or δs) parameters 
across associative conditions. Model 1 is expected to be the best fitting one when low 
between–conditions variability is observed at both respondent and stimulus levels (i.e., 
neither respondents’ performance nor stimuli functioning vary between associative con­
ditions).

Specifying stimulus random slopes in associative conditions and respondent’s ran­
dom intercepts across conditions, Model 2 accounts for the within–stimuli between–con­
ditions variability and the between–respondents across–conditions variability. This mod­
el yields overall respondent (θp or τp) and condition–specific stimulus (bsc or δsc, where 
c denotes the associative condition) parameters. Model 2 is expected to be the best 
fitting model when high within–stimuli between–conditions variability is observed. This 
suggests that the IAT effect is mostly due to variations in stimuli functioning between 
conditions. The difference between condition–specific stimulus estimates allows for in­
vestigating the contribution of each stimulus to the IAT effect.

Model 3 addresses the within–respondents between–conditions variability and the 
between– stimuli across–conditions variability by specifying respondent’s random slopes 
in associative conditions and stimulus random intercepts across conditions. Model 3 
yields condition–specific respondent (θpc or τpc) and overall stimulus (bs or δs) parame­
ters. Model 3 is expected to be the best fitting model when high within–respondents 
between–conditions variability is observed, this suggesting that the IAT effect is mostly 
due to the changes in respondents’ performance between conditions. The difference 
between respondent condition–specific estimates allows for investigating the bias on 
respondents’ performance due to the IAT associative conditions.
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The models were applied to the Chocolate IAT data. In what follows, the models 
applied to accuracy responses are identified by a capital “A”. Those applied to log-time 
responses are identified by a capital “T”. No correction was applied on the incorrect 
time responses for estimating the log-normal models. Models were fitted with the lme4 
package (Bates et al., 2015b) in R (Version 3.5.1, R Core Team, 2018). Simple R scripts 
for estimating these models from any IAT are available at the Supplementary Materials 
section.

Results
Two participants showed more than 25% of incorrect responses in at least one associative 
condition (Nosek et al., 2002). The final sample consisted of 74 participants (F = 71.62%, 
Mean age = 24.08 ± 2.88 years). The 41.90% of the participants chose milk chocolate.

Accuracy Models
Model comparison is reported in the top panel of Table 2. BIC suggests a better fit of 
Model A1 compared to model A2, whereas AIC, Log-likelihood, and Deviance suggest 
a better fit of Model A2. Thus, Model A2 was chosen. This model provides overall 
Rasch-like respondent ability (θp) and condition–specific stimulus easiness (bMGDB and 
bDGMB) estimates. In this application, the ability estimates θp can be considered as accu­
racy-based measures of the respondents’ preference. Condition MGDB showed higher 
probability of correct responses (log-odds = 3.67, SE = 0.14, z = 26.15, p < .001) than 
condition DGMB (log-odds = 2.61, SE = 0.10, z = 27.26, p < .001). Between–respondents 
variability was 0.33. Stimuli showed higher variability in the MGDB condition (σ2 = 0.21) 
than in the DGMB condition (σ2 = 0.01). The condition–specific stimulus random effects 
were weakly correlated (r = .20).

Table 2

Model Comparison Between Accuracy (Top Panel) and Log-Time (Bottom Panel) Models

Model AIC BIC Log-Likelihood Deviance

Accuracy
A1 3627.70 3656.10 −1809.90 3619.70
A2 3625.58 3668.10 −1806.80 3613.60
A3 Failed to converge

Log-time
T1 7856.45 7891.91 −3923.23 7846.45
T2 Aberrant estimates
T3 7159.23 7208.87 −3572.62 7145.23
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The condition–specific easiness estimates are reported in Table 3.

Table 3

Condition–Specific Easiness Estimates (bsc) and Overall Time Intensity Estimates (δs) of the Stimuli

Good 
attributes b

DGMB
b

MGDB
b

DGMB
−b

MGDB δs
Bad 
attributes b

DGMB
b

MGDB
b

DGMB
−b

MGDB δs

joya 2.62 4.02 −1.40 0.01 hatea 2.59 3.85 −1.26 0.01

happinessa 2.64 4.03 −1.39 0.02 failurea 2.68 3.93 −1.25 0.07

pleasurea 2.56 3.70 −1.15 0.01 terriblea 2.64 3.89 −1.24 0.04

peace 2.64 3.77 −1.14 −0.03 disaster 2.66 3.90 −1.24 0.07
heaven 2.63 3.77 −1.14 0.08 bad 2.58 3.73 −1.15 0.07
marvelous 2.66 3.79 −1.13 0.05 horrible 2.62 3.76 −1.14 0.05
laughter 2.67 3.76 −1.10 0.06 evil 2.63 3.74 −1.11 0.10
good 2.66 3.74 −1.08 0.01 disgust 2.60 3.70 −1.11 0.01
glory 2.57 3.57 −1.00 0.02 nasty 2.59 3.33 −0.74 0.04
love 2.62 3.58 −0.96 0.02 ugly 2.60 3.32 −0.72 −0.01
excellentb 2.64 3.59 −0.95 0.01 painb 2.58 3.23 −0.65 0.05

beautyb 2.61 3.46 −0.85 0.02 annoyingb 2.58 3.05 −0.47 0.08

wonderfulb 2.62 3.45 −0.83 0.09 agonyb 2.57 2.49 0.08 0.04

M (SD) 2.63 
(0.03)

3.71 
(0.17)

−1.09 (0.17) 0.03 
(0.03)

M (SD) 2.61 
(0.03)

3.53 
(0.41)

−0.92 (0.40) 0.05 (0.03)

Dark 
Chocolate b

DGMB
b

MGDB
b

DGMB
−b

MGDB δs
Milk 
Chocolate b

DGMB
b

MGDB
b

DGMB
−b

MGDB δs

Dark5a 2.56 3.94 −1.38 −0.12 Milk3a 2.60 3.95 −1.35 −0.04

Dark2a 2.60 3.82 −1.23 −0.11 Milk6a 2.66 3.99 −1.33 −0.04

Dark6a 2.55 3.72 −1.16 −0.10 Milk4a 2.53 3.80 −1.27 −0.04

Dark4 2.62 3.62 −1.00 −0.07 Milk2 2.57 3.61 −1.04 −0.06
Dark3b 2.58 3.53 −0.95 −0.08 Milk5b 2.62 3.64 −1.02 −0.05

Dark7b 2.58 3.41 −0.83 −0.07 Milk1b 2.62 3.62 −1.01 −0.03

Dark1b 2.49 3.27 −0.78 −0.11 Milk7b 2.54 3.49 −0.95 −0.04

M (SD) 2.57 
(0.03)

3.62 
(0.22)

−1.05 (0.20) −0.10 
(0.02)

M (SD) 2.59 
(0.05)

3.73 
(0.17)

−1.14 (0.17) −0.04 (0.01)

Note. DGMB: Dark-Good/Milk-Bad condition; MGDB: Milk-Good/Dark-Bad condition. Rows are ordered by 
increasing values of bDGMB−bMGDB. The units of the easiness estimates are the log-odds, the units of the time 
intensity estimates are the log-seconds.
aStimuli that, according to the condition–specific easiness estimates, contributed the most to the IAT effect.
bStimuli that, according to the condition–specific easiness estimates, contributed the least to the IAT effect.

Stimuli were easier in the MGDB condition than in the DGMB one, MMGDB = 3.64 ± 0.29, 
MDGMB = 2.60 ± 0.04; t(40) = −21.97, p < .001, 95% CI [−1.13, −0.94]. A linear model was 
specified to investigate the effect of the stimulus categories on the difference between 
condition–specific easiness estimates, which can be considered as an accuracy-based 
measure of the IAT effect. An overall significant effect of the stimulus categories was 
found, F(4, 36) = 139.80, p < .001, Adjusted R 2 = 0.93. Milk and Good exemplars contributed 
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the most to the IAT effect, BMilk = −1.13, SE = 0.11, t(36) = −10.84, p < .001; BGood = −1.09, 
SE = 0.08, t(36) = −14.10, p < .001). Bad and Dark exemplars contributed the least (BBad = 
−0.92, SE = 0.07, t(36) = −11.98, p < .001; BDark = −1.05, SE = 0.11, t(36) = −9.97, p < .001.

Log-Time Models
Model comparison is reported in the bottom panel of Table 2. Model T3 was chosen, 
providing overall stimulus time intensity (δs) and respondent condition–specific speed 
estimates (τMGDB and τDGMB) of the log-normal model. Responses were faster in the 
MGDB condition (B = −0.36, SE = 0.02, t = −15.01) than in the DGMB condition (B = 
−0.12, SE = 0.03, t = −4.28). The between–stimuli variability was extremely low (σ2 = 
0.004). Respondents showed similar variabilities in DGMB and MGDB conditions (σDGMB2

= 0.05; σMGDB2  = 0.03), and their random effects were moderately correlated (r = .40). A 
linear model was specified to investigate the effect of the stimulus categories on the 
time intensity estimates (Table 3). An overall significant effect of the stimulus categories 
was found, F(4, 36) = 37.41, p < .001, Adjusted R 2 = 0.78. The exemplars of both targets 
required the least amount of time to get a response (BDark = −0.09, SE = 0.01, t(36) = 
−8.99, p < .001; BMilk = −0.04, SE = 0.01, t(36) = −4.09, p < .001), whereas exemplars of both 
evaluative dimensions required the largest amount of time (BBad = 0.05, SE = 0.01, t(36) = 
6.20, p < .001; BGood = 0.03, SE = 0.01, t(36) = 3.70, p < .001).

Relationship Between Model Estimates, D Scores, and Explicit 
Measures
A speed-differential was obtained by taking the difference between the condition–specif­
ic speed estimates, which can be considered as a latency-based measure of the IAT effect. 
Positive values indicated higher speed in the DGMB condition than in the MGDB condi­
tion. Results of Pearson’s correlations between explicit measures, D scores, and model 
estimates are reported in Table 4. Explicit chocolate evaluations strongly correlated with 
D scores and condition–specific speed estimates.

The accuracy-based measure of the respondent’s preference correlated neither with 
explicit chocolate evaluations nor with any of the condition–specific speed estimates or 
the D score. As such, it appears these estimates cannot be considered as an indicator of 
the implicit preference of the respondents. High speed in the MGDB condition correlated 
with positive milk chocolate evaluations, and not with the dark chocolate evaluations. 
Similarly, high speed in the DGMB condition correlated with positive dark chocolate 
evaluations, and not with the milk chocolate evaluations. This suggests that the perform­
ance in each associative condition is mostly driven by the associations between one of 
the two chocolates and positive attributes. In this sense, the like for each of the two 
chocolates has a major importance in influencing the responses.
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Choice Prediction
The predictive abilities of model estimates and D scores were compared. Two data sets 
were created from the full-length data set by selecting the responses to the three stimuli 
of each category that contributed the most (stimuli in Table 3 marked with a) or the least 
(stimuli in Table 3 marked with b) to the IAT effect. The D4 algorithm was computed 
on both data sets. The predictive abilities of differential measures (i.e., D scores and 
speed-differential) and of their single components (i.e., MMGDB and MDGMB of the D 
scores, τDGMB and τMGDB of the speed-differential) were investigated. All predictors were 
checked for collinearity by computing Variance Inflation Factors (VIFs). The D score 
was collinear with the speed differential, the two condition–specific speed estimates, 
and the condition–specific average response times (VIFs > 10). Condition–specific speed 
estimates were not collinear between each other (VIFs < 4.00), but they were collinear 
with condition–specific average response times. Condition–specific speed and average 
response times, D score, and speed differential were not collinear with food habits and 
preference estimates (VIFs < 4.00). Given the high collinearity between the predictors (i.e., 
the D score and the other time-based predictors, namely the condition–specific speed 
estimates, the condition–specific average response times, and the speed differential), they 
were entered in separate models. As such, eight logistic regression models were speci­
fied. Preference estimates and food habits of the respondents were included in all starting 
models. Either the D score, the speed differential, the condition–specific speed estimates, 
or the condition–specific average response times were included in the same model. 
Relevant predictors were selected with backward deletion. Model general accuracy (i.e., 
percentage of choices correctly identified by the model), model dark chocolate choice 

Table 4

Correlation Between Model Estimates, Explicit Measures, and D Score

Condition 1 2 3 4 5 6

1 - Explicit Milk

2 - Explicit Dark −0.51∗∗∗

3 - D score −0.43∗∗∗ 0.51∗∗∗

4 - τDGMB 0.12 −0.43∗∗∗ −0.60∗∗∗

5 - τMGDB −0.36∗∗ 0.14 0.42∗∗∗ 0.42∗∗∗

6 - θp 0.01 0.18 0.06 0.07 0.18

7 - Speed-differential −0.41∗∗∗ 0.55∗∗∗ 0.95∗∗∗ −0.67∗∗∗ 0.39∗∗∗ 0.07

Note. τ: speed estimate; θ: Accuracy-based measure of respondents’ preference, DGMB: Dark-Good/Milk-Bad 
condition; MGDB: Milk-Good/Dark- Bad condition; Speed-differential: τMGDB−τDGMB.
**p < .01. ***p < .001.
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(DCC) accuracy (i.e., percentage of DCCs correctly identified by the model), and model 
milk chocolate choice (MCC) accuracy (i.e., percentage of MCCs correctly identified by 
the model) were computed on the models resulting from backward deletion (Table 5).

Table 5

Choice Prediction: Models Resulting After Backward Deletion

Predictors B SE Nagelkerke R 2 General DCC MCC

Intercept −1.65∗∗ 0.51 0.26 66% 70% 61%

D score −2.03∗∗∗ 0.60

Intercept −1.65∗∗∗ 0.48 0.26 68% 72% 61%

Speed-differential −5.02∗∗∗ 1.43

Intercept −1.76∗∗∗ 0.52 0.30 70% 74% 65%

D score (Best) −2.07∗∗∗ 0.58

Intercept −1.23∗∗∗ 0.42 0.18 69% 72% 65%

D score (Worst) −1.40∗∗∗ 0.47

Single components
Intercept −0.23 1.36 0.27 65% 74% 52%

MDGMB 0.00∗∗ 0.01

MMGDB −0.01∗∗ 0.01

Intercept −2.05∗ 0.74 0.27 72% 74% 68%

τDGMB 4.73∗∗∗ 1.48

τMGDB −5.99∗∗∗ 1.98

Intercept −0.17 1.61 0.30 65% 74% 52%

MDGMB (Best) 0.00∗∗∗ 0.01

MMGDB (Best) −0.01∗ 0.01

Intercept 0.61 1.23 0.16 64% 77% 45%

MDGMB (Worst) 0.00∗ 0.01

MMGDB (Worst) 0.00∗ 0.01

Note. Best: Highly contributing stimuli data set; Worst: Lowly contributing stimuli data set; τ: Speed; Speed-
differential: τMGDB−τDGMB; DGMB: Dark-Good/Milk-Bad condition; MGDB: Milk-Good/Dark-Bad condition; Gen­
eral: General accuracy of chocolate choice predictions; DCC: Dark Chocolate Choice Accuracy; MCC: Milk 
Chocolate Choice Accuracy.
*p < .05. **p < .01. ***p < .001.

Speed-differentials and D scores resulted in similar predictive accuracies. “Best” and 
“Worst” data sets D scores provided more accurate predictions than full data set D 
scores. The “Best” data set D scores explained the highest proportion of variance. Condi­
tion–specific speed estimates resulted in the highest MCC accuracy.
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Final Remarks
This study investigated whether the predictive ability of the IAT could be enhanced with 
statistical models able to account for its fully-crossed structure. The results suggested 
that the proposed modeling framework can improve the predictive ability of the IAT 
while providing information on respondent’s performance and stimulus functioning. 
This information can be further employed to reduce the across-trial variability due to 
stimuli heterogeneity, thus leading to better functioning, more informative, and poten­
tially briefer IATs.

The stimulus functioning in respect to both its own category and other categories can 
be investigated through stimulus time intensity estimates. The within–category variabili­
ty allows for identifying the most and the least representative stimuli of each category, 
whereas the between–category variability suggests different times for processing target 
and attribute exemplars that potentially contribute to the across-trial variability.

Condition–specific easiness estimates suggested that the IAT effect in the Chocolate 
IAT was mostly driven by Good and Milk exemplars. Consistently, the correlations be­
tween condition–specific speed estimates and differential measures pointed at a major 
influence of the speed in the MGDB condition. The correlations between speed estimates 
and explicit chocolate evaluations further suggested that the performance in each condi­
tion was mostly influenced by positive attributes. As such, it can be speculated that 
the IAT effect is mostly driven by a milk chocolate preference, but the performance in 
each condition is mostly influenced by the associations of positive attributes with one of 
the two chocolates. The ability of the model estimates to disentangle the component(s) 
mostly involved in the performance at the IAT might have a high resonance in both 
marketing and applied social psychology. In the former field, it can clarify whether the 
obtained results are mostly due to the preference for one of two contrasting brands 
and help in designing ad hoc marketing campaigns. In the latter one, it can disentangle 
whether the performance at the IAT is mostly due to in-group preference rather than 
outgroup derogation. Understanding whether individuals more easily associate the in-
group with positive attributes rather than the outgroup with negative ones has important 
practical implications.

Previous studies have stressed the sensitivity of the IAT to the stimulus properties, 
suggesting that valid IATs can be obtained with a small number of highly informative 
and representative stimuli (Bluemke & Friese, 2006; Nosek et al., 2005). In this applica­
tion, the selection of highly contributing stimuli allowed for reducing the across-trial 
variability, such that the number of trials was minimized while the information that 
could be gathered from the IAT was maximized. This unveils the possibility of reducing 
the length of the IAT without losing information and/or impairing its validity. Reducing 
the stimuli heterogeneity also resulted in D scores better able to predict the behavioral 
outcome. The D scores computed on the most informative data set explained the highest 
proportion of variance and provided better predictions than the D scores computed on 
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the full-length data set. Interestingly, also the D scores computed on the least informative 
data set better predicted the choice than the full-length D scores. We speculate that 
by reducing the stimuli heterogeneity and the across trial variability, more reliable D 
scores can be obtained because the sources of error variance are accounted for. Being 
more reliable, the D scores obtained on reduced data sets can better predict behavioral 
outcomes than those obtained on full data sets, which are affected by error variance. This 
result might further stress the sensitivity of the D score to the across-trial variability. 
However, further investigations on this topic are needed.

In this study, the target categories (i.e., dark chocolate and milk chocolate) were 
quite homogeneous. The modeling framework helped in highlighting the stimuli with a 
different functioning in respect to the stimuli belonging to the same category and those 
that mostly contributed to the IAT effect (i.e., the stimuli that presented a high difference 
in their easiness estimates between conditions). This information contributed to get 
a better understanding of the IAT measure, and to reduce the across-trial variability, 
leading to a better prediction of the behavioral outcome. When target categories are 
more heterogeneous (as it could be, e.g., race), the proposed modeling framework can 
identify the malfunctioning stimuli and those that mostly contribute to the IAT effect 
(Epifania et al., 2021). A reduction of the across-trial variability can be expected also in 
the case of heterogeneous categories, but it might not directly result in better predictions 
of behavioral outcomes. In these cases, the heterogeneity of the categories might require 
a larger collection of stimuli to appropriately represent them and to efficiently predict 
behavioral outcomes of interest. Future studies should investigate the functioning of the 
proposed modeling framework when heterogeneous categories are used.

The comparisons between the full-length IAT and the short IATs based on the respon­
ses from the same starting data set constitutes the main limitation of the study. In future 
studies, two IATs could be designed, one including only highly representative stimuli, the 
other one including only poorly representative stimuli. If the results are replicated with 
these IATs, further evidence on the importance of the representativeness of the stimuli 
and about the D score sensitivity to the across-trial variability would be obtained.

Other models that can concurrently account for accuracy and time responses have 
been applied to the IAT data, namely the Diffusion Model (DM; Klauer et al., 2007) 
and the Discrimination Association Model (DAM; Stefanutti et al., 2013, see also the 
four-counter DAM; Stefanutti et al., 2020). DM and DAM consider the performance of the 
respondents at the IAT as the result of different processes, each of which is expressed 
by its own parameter. As such, both models provide in-depth information concerning the 
individual differences of the respondents. However, no information at the single stimulus 
level is available, but only at the stimulus categories level. On the other hand, the 
modeling framework introduced in this contribution results in fine-grained information 
also at the individual stimulus level, which in turn allows for the investigation of the 
stimuli representativeness of their own category as well as of their contribution to the 
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IAT effect. A limitation of this study is that it does not provide a direct comparison 
between the information resulting from the DAM or the DM and that resulting from the 
modeling framework proposed here. Such a comparison could be of interest for future 
studies.

The convergence failure of Model A3 and the aberrant estimates obtained with Model 
T2 raise concerns and should be considered as a potential drawback of the modeling 
framework introduced in this contribution. Convergence failure or aberrant estimates 
suggest that the model could not find a solution, usually because of a lack of variability 
in the data (i.e., the random structure of the model requires a higher variability than 
that observed in the data, Bates et al., 2015a). The poor variability in the accuracy 
performance of the respondents (SD = 0.11) might have caused the convergence failure of 
Model A3. Similarly, the poor variability in the response times of the stimuli (SD = 0.02) 
might have caused the degenerate solution of Model T2.
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Appendix

Generalized Linear Model and Rasch Model
According to the Rasch model, the probability of a correct response is a function of the distance on 
the latent trait between respondent and stimulus characteristics:

P(xps = 1 θp, bs) =
exp θp − bs

1 + exp θp − bs
(1)

where P (xps = 1) is the probability of respondent p to correctly respond to stimulus s, θp is the 
ability of respondent p (i.e., the amount of latent trait of respondent p) and bs is the difficulty of 
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stimulus s (i.e., the amount of latent trait required by item s to obtain a correct response). The 
higher the value of θp, the higher the amount of responses correctly endorsed by respondent p. The 
higher the value of bs, the lower the amount of correct responses observed on stimulus s.
In a Generalized Linear Model (GLM), the binomially distributed responses are linked to the linear 
combination of predictors ηps by a logit link function. The probability of a correct response µps 
given the linear combination of predictors ηps is obtained as:

µps = logit−1 ηps
exp ηps

1  +  exp ηps
(2)

Linear Model and Log-Normal Model
According to the log-normal model, the expected log-time response is a function of the distance on 
the latent trait between respondent and stimulus characteristics:

tps = δs−τp (3)

where tps is the expected log-time response of respondent p to stimulus s, δs is the time absorb­
ing power of stimulus s (i.e., time intensity parameter), and τp expresses the speed with which 
respondent p performs the task (i.e., speed parameter). The higher the value of δs, the higher 
the amount of time spent on stimulus s. The higher the value of τp, the smaller the amount of 
time respondent p spends on the stimuli. The expected log-time response depends on the distance 
between respondent and stimulus parameters.
In a Linear Model (LM), the expected log-time responses are linked to the linear combination of 
predictors ηps by an identity function that follows a normal distribution:

tps = β0 + βsXs + βpXp + εps. (4)

The log-normal model in Equation 3 can be equated to the LM in Equation 4, where the log-time 
responses are predicted by respondent and stimulus characteristics and the intercept is set at 0.

Fixed and Random Structures of the (G)LMMs
The inclusion of random effects in the linear predictors η extends (G)LMs to (Generalized) Linear 
Mixed-Effects Models ((G)LMM). When (G)LMMs are used to estimate the Rasch-like and log-nor­
mal parameters, the stimulus and respondent parameters are summed together (i.e., from θp − 
bs to θp + bs and from δs − τp to δs + τp for the Rasch and log-normal models, respectively). 
Consequently, the higher the value of bs, the higher the amount of correct responses registered on 
stimulus s (i.e., easiness parameter), and the higher the value of τp, the slower respondent p is (i.e., 
the larger the amount of time respondent p spends on each stimulus).
Respondent and stimulus estimates of Rasch-like and log-normal models are obtained from re­
spondent and stimulus Best Linear Unbiased Predictors (BLUPs, the deviation of each level of the 
random effects from the estimates of the fixed effects, Doran et al., 2007). Person parameters (θp 
and τp) derive from the random effects of the respondents, being either αp ∼ N (0, σαp2 ) (random 
intercepts) or βpc ∼ MVN (0, Σpc) (random slopes in associative conditions c). Stimulus parameters 
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(bs and δs) derive from the random effects of the stimuli, being either αs ∼ N (0, σαs2 ) (random 
intercepts) or βsc ∼ MVN (0, Σsc) (random slopes in the associative conditions c). Besides the 
distribution of the error term (i.e., ε ∼ Logistic(0, σ2) and ε ∼ N (0, σ2) for the GLMMs and the 
LMMs, respectively), the random structures of the (G)LMMs are identical. The expected response y 
to each trial of the IAT i (i ∈ {1, . . ., n}) of participant p (p ∈ {1, . . ., P }) on stimulus s (s ∈ {1, . . ., 
S}) in condition c (c ∈ {1, . . ., C}) can be either the expected log-odds of the probability of a correct 
response (GLMMs) or the expected log-time response (LMMs). Since the fixed intercept α is set at 
0 (i.e., none of the levels of the fixed slope is taken as the reference value), either the log-odds of 
a correct response for each condition (GLMMs) or the average log-time for each condition (LMMs) 
are estimated. The fixed structure of the models is kept constant, while the random structures vary 
across models.

Accuracy Models Specification
Model A1: The random intercepts of respondents and stimuli across associative conditions are 
specified:

yi = logit−1 α + βcXc +  αp i   +  αs i   +  εi (5)

with αp ∼ N (0, σαp2 ). The random structure of Model A1 provides overall respondent ability θp and 
overall stimulus easiness bs estimates.
Model A2: The random slopes of stimuli in associative conditions and the random intercepts of 
respondents across associative conditions are specified:

yi = logit− 1(α + βcXc + αp[i] + βs[i]ci + εi) (6)

with βsc ∼ MVN (0, Σsc) (where Σsc is the variance-covariance matrix of the population of stimu­
li) and αp ∼ N (0, σαp2 ). Model A2 provides condition–specific stimulus easiness bsc and overall 
respondent ability θp estimates.
Model A3: The random slopes of respondents in associative conditions and the random intercepts 
of stimuli across associative conditions are specified:

yi = logit− 1(α + βcXc + αs[i] + βp[i]ci + ci) (7)

with βpc ∼ MVN (0, Σpc) (where Σpc represents the variance-covariance matrix of the population 
of respondents) and αs ∼ N (0, σαs2 ). The random structure of model A3 provides condition–specific 
respondent ability θpc and overall stimulus easiness bs estimates.

Log-Time Models Specification
Model T1: The random intercepts of respondents and stimuli across associative conditions are 
specified:

yi = α + βcXc + αp[i] + αs[i] + εi (8)
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with αp∼ N (0, σαp2 ) and αs ∼ N (0, σαs2 ). Model T1 provides overall respondent speed τp and overall 
stimulus time intensity δs estimates.
Model T2: The random slopes of stimuli in associative conditions and the random intercepts of 
respondents across associative conditions are specified:

yi = α + βcXc + αp[i] + βs[i]ci + εi (9)

with βsc ∼ MVN (0, Σsc) (where Σsc is the variance-covariance matrix of the population of stimuli) 
and αp ∼ N (0, σαp2 ). Model T2 provides condition–specific stimulus time intensity δsc and overall 
respondent speed τp estimates.
Model T3: The random slopes of respondents in associative conditions and the random intercepts 
of stimuli across associative conditions are specified:

yi = α + βcXc + αs[i] + βp[i]ci + εi (10)

with βpc ∼ MVN (0, Σpc) (where Σpc represents the variance-covariance matrix of the population of 
respondents) and αs ∼ N (0, , σαs2 ). This model provides condition–specific respondent speed τpc and 
overall stimulus time intensity δs estimates.
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