Skip to main content
Review

Thylakoids: A Novel Food-Derived Supplement for Obesity – A Mini-Review

Published Online:https://doi.org/10.1024/0300-9831/a000556

Abstract. Nowadays, overweight and obesity are major epidemic health problems that can bring about some other health issues such as cardiovascular disease which is the first cause of mortality worldwide. Thylakoids are disc-like membranes responsible for photosynthetic light reactions in chloroplasts of green plants. Although only a few animal and human studies have been conducted regarding the impact of thylakoids on overweight- and obesity-related factors, all of them have resulted in positive outcomes. These outcomes are as follows: increment of satiety response; suppression of hunger sensations, particularly hedonic hunger; reduction of body weight and fat; promotion of glucose homeostasis; decrease in serum lipids; attenuation of oxidative stress and inflammation; and modulation of gut microbiota, notably by increasing some helpful bacteria such as Lactobacillus reuteri. It seems that some of these useful effects are related to retarded absorption of dietary fat and carbohydrate caused by thylakoids. There is still a need for more well-designed studies.

References

  • 1 Maggi, S., Busetto, L., Noale, M., Limongi, F., & Crepaldi, G. (2015) Obesity: definition and epidemiology. In: Multidisciplinary Approach to Obesity (Lenzi, A.Migliaccio, S.Donini, L.M.eds.) pp. 31–39. Springer, Switzerland. First citation in articleGoogle Scholar

  • 2 Hopkins, M., & Blundell, J.E. (2016) Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity. Clin Sci. 130(18), 1615–1628. First citation in articleCrossref MedlineGoogle Scholar

  • 3 O’Rourke, R.W. (2015) The pathophysiology of obesity and obesity-related diseases. In: The ASMBS Textbook of Bariatric Surgery: Volume 1: Bariatric Surgery (Nguyen, N.T.Blackstone, R.P.Morton, J.M.Ponce, J.Rosenthal, R.J.eds.) pp. 13–36, Springer, New York. First citation in articleGoogle Scholar

  • 4 Jensen, C.D., Sato, A.F., & Jelalian, E. (2013) Obesity: causes and consequences. In: Encyclopedia of Behavioral Medicine (Gellman, M.D.Turner, J.R.eds.) pp. 1355–1358, Springer, New York. First citation in articleGoogle Scholar

  • 5 Kyrou, I., Randeva, H.S., & Weickert, M.O. (2014) Clinical problems caused by obesity. In: Endotext (De Groot, L.Beck-Peccoz, P.Chrousos, G.eds.) [Internet]. MDText.com, Inc., South Dartmouth (MA). Available from http://www.ncbi.nlm.nih.gov/books/NBK278973/ First citation in articleGoogle Scholar

  • 6 James, W.P.T. (2013) Obesity-a modern pandemic: the burden of disease. Endocrinol Nutr. 60(SUPPL.1), 3–6. First citation in articleMedlineGoogle Scholar

  • 7 World Health Organization. (2015) Obesity and overweight. Retrieved July 11, 2016, from http://www.who.int/mediacentre/factsheets/fs311/en/ First citation in articleGoogle Scholar

  • 8 Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., et al. (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 384(9945), 766–781. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Jafari-Adli, S., Jouyandeh, Z., Qorbani, M., Soroush, A., Larijani, B., & Hasani-Ranjbar, S. (2014) Prevalence of obesity and overweight in adults and children in Iran; a systematic review. J Diabetes Metab Disord. 13(1), 121. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Rahmani, A., Sayehmiri, K., Asadollahi, K., Sarokhani, D., Islami, F., & Sarokhani, M. (2015) Investigation of the prevalence of obesity in Iran: a systematic review and meta-analysis study. Acta Med Iran. 53(10), 596–607. First citation in articleMedlineGoogle Scholar

  • 11 Kushner, R.F. (2014) Weight loss strategies for treatment of obesity. Prog Cardiovasc Dis. 56(4), 465–472. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Martínez-augustin, O., Aguilera, C.M., Gil-campos, M., Medina, F.S., De, Gil., & A., (2012) Bioactive anti-obesity food components. Int J Vitam Nutr Res. 82(3), 148–156. First citation in articleLinkGoogle Scholar

  • 13 Poddar, K., Kolge, S., Bezman, L., Mullin, G.E., & Cheskin, L.J. (2011) Nutraceutical supplements for weight loss: a systematic review. Nutr Clin Pract. 26(5), 539–552. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Staehelin, L.A. (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosyn Res. 76(1–3), 185–196. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Mustárdy, L., Buttle, K., Steinbach, G., & Garab, G. (2008) The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. Plant Cell. 20(10), 2552–2557. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Staehelin, L.A., & Staay, G.W.M. (1996) Structure, composition, functional organization and dynamic properties of thylakoid membranes. In: Oxygenic Photosynthesis: the Light Reactions (Ort, D.R.Yocum, C.F.Heichel, I.F.eds.) pp. 11–30. Springer, Dordrecht, Netherlands. First citation in articleGoogle Scholar

  • 17 Andreasson, E., Svensson, P., Weibull, C., & Albertsson, P.Å. (1988) Separation and characterization of stroma and grana membranes – evidence for heterogeneity in antenna size of both photosystem I and photosystem II. Biochim Biophys Acta. 936(3), 339–350. First citation in articleCrossrefGoogle Scholar

  • 18 Emek, S.C., Szilagyi, A., Akerlund, H.E., Albertsson, P.Å., Köhnke, R., Holm, A., & Erlanson-Albertsson, C. (2010) A large scale method for preparation of plant thylakoids for use in body weight regulation. Prep Biochem Biotechnol. 40(1), 13–27. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Roberts, J.L., & Moreau, R. (2016) Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct. 7(8), 3337–3353. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Fuhrmann, E., Gathmann, S., Rupprecht, E., Golecki, J., & Schneider, D. (2009) Thylakoid membrane reduction affects the photosystem stoichiometry in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149(2), 735–744. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Limantara, L., Dettling, M., Indrawati, R., & Brotosudarmo, T.H.P. (2015) Analysis on the chlorophyll content of commercial green leafy vegetables. Procedia Chem. 14, 225–231. First citation in articleCrossrefGoogle Scholar

  • 22 Akerlund, H.E., Andersson, B., Persson, A., & Albertsson, P.Å. (1979) Isoelectric points of spinach thylakoid membrane surfaces as determined by cross partition. Biochim Biophys Acta. 552(2), 238–246. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Erlanson-Albertsson, C., & Albertsson, P.-Å. (2015) The use of green leaf membranes to promote appetite control, suppress hedonic hunger and loose body weight. Plant Foods Hum Nutr. 70(3), 281–290. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Montelius, C., Gustafsson, K., Westrom, B., Albertsson, P.A., Emek, S.C., Rayner, M., & Erlanson-Albertsson, C. (2011) Chloroplast thylakoids reduce glucose uptake and decrease intestinal macromolecular permeability. Br J Nutr. 106(6), 836–844. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Teixeira, T.F., Collado, M.C., Ferreira, C.L., Bressan, J., & Maria do Carmo, G.P. (2012) Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res. 32(9), 637–647. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Emek, S.C., Åkerlund, H.-E., Clausén, M., Ohlsson, L., Weström, B., Erlanson-Albertsson, C., & Albertsson, P.-Å. (2011) Pigments protect the light harvesting proteins of chloroplast thylakoid membranes against digestion by gastrointestinal proteases. Food Hydrocoll. 25(6), 1618–1626. First citation in articleCrossrefGoogle Scholar

  • 27 Albertsson, P.Å., Köhnke, R., Emek, S., Mei, J., Rehfeld, J., Akerlund, H., & Erlanson-Albertsson, C. (2007) Chloroplast membranes retard fat digestion and induce satiety: effect of biological membranes on pancreatic lipase/co-lipase. Biochem J. 401, 727–733. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Köhnke, R., Lindqvist, A., Goransson, N., Emek, S.C., Albertsson, P.Å., Rehfeld, J.F., et al. (2009) Thylakoids suppress appetite by increasing cholecystokinin resulting in lower food intake and body weight in high-fat fed mice. Phytother Res. 23(12), 1778–1783. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Köhnke, R., Svensson, L., Piedra, J.L.V., Pierzynowski, S.G., Weström, B., & Erlanson-Albertsson, C. (2010) Feeding appetite suppressing thylakoids to pigs alters pancreatic lipase/colipase secretion. Livest Sci. 134(1), 68–71. First citation in articleCrossrefGoogle Scholar

  • 30 Montelius, C., Osman, N., Weström, B., Ahrné, S., Molin, G., Albertsson, P.-Å., & Erlanson-Albertsson, C. (2013) Feeding spinach thylakoids to rats modulates the gut microbiota, decreases food intake and affects the insulin response. J Nutr Sci. 2, e20. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Montelius, C., Szwiec, K., Kardas, M., Lozinska, L., Erlanson-Albertsson, C., Pierzynowski, S., et al. (2014) Dietary thylakoids suppress blood glucose and modulate appetite-regulating hormones in pigs exposed to oral glucose tolerance test. Clin Nutr. 33(6), 1122–1126. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Masih, D., Rakhra, G., & Singh, S.N. (2016) Effect of thylakoid supplementation on activities of glucose metabolizing enzymes in rats. Adv Weigh Loss Manag Med Dev. 1(1), 1–5. First citation in articleGoogle Scholar

  • 33 Cooper, J.A. (2014) Factors affecting circulating levels of peptide YY in humans: a comprehensive review. Nutr Res Rev. 27(01), 186–197. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Yadav, A., Kataria, M.A., Saini, V., & Yadav, A. (2013) Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 417, 80–84. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Ramaiah, S.K. (2007) A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem Toxicol. 45(9), 1551–1557. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Köhnke, R., Lindbo, A., Larsson, T., Lindqvist, A., Rayner, M., Emek, S.C., et al. (2009) Thylakoids promote release of the satiety hormone cholecystokinin while reducing insulin in healthy humans. Scand J Gastroenterol. 44(6), 712–719. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Stenblom, E.-L., Montelius, C., Östbring, K., Håkansson, M., Nilsson, S., Rehfeld, J.F., & Erlanson-Albertsson, C. (2013) Supplementation by thylakoids to a high carbohydrate meal decreases feelings of hunger, elevates CCK levels and prevents postprandial hypoglycaemia in overweight women. Appetite. 68, 118–123. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Montelius, C., Erlandsson, D., Vitija, E., Stenblom, E.-L., Egecioglu, E., & Erlanson-Albertsson, C. (2014) Body weight loss, reduced urge for palatable food and increased release of GLP-1 through daily supplementation with green-plant membranes for three months in overweight women. Appetite. 81, 295–304. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Montelius, C., Erlandsson, D., Vitija, E., Stenblom, E.L., Egecioglu, E., & Erlanson-Albertsson, C. (2016) Corrigendum to “Body weight loss, reduced urge for palatable food and increased release of GLP-1 through daily supplementation with green-plant membranes for three months in overweight women” [Appetite 81 (2014), 295–304]. Appetite. 101, 239. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Stenblom, E.-L., Montelius, C., Erlandsson, D., Skarping, L., Fransson, M., Egecioglu, E., et al. (2014) Decreased urge for palatable food after a two-month dietary intervention with green-plant membranes in overweight women. J Obes Weight Loss Ther. 4, 238. First citation in articleGoogle Scholar

  • 41 Rebello, C.J., Chu, J., Beyl, R., Edwall, D., Erlanson-Albertsson, C., & Greenway, F.L. (2015) Acute effects of a spinach extract rich in thylakoids on satiety: a randomized controlled crossover trial. J Am Coll Nutr. 34(6), 470–477. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Stenblom, E.-L., Egecioglu, E., Landin-Olsson, M., & Erlanson-Albertsson, C. (2015) Consumption of thylakoid-rich spinach extract reduces hunger, increases satiety and reduces cravings for palatable food in overweight women. Appetite. 91, 209–219. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Bassuk, S.S., Rifai, N., & Ridker, P.M. (2004) High-sensitivity C-reactive protein: clinical importance. Curr Probl Cardiol. 29(8), 439–493. First citation in articleMedlineGoogle Scholar

  • 44 Boden, G. (2008) Obesity and free fatty acids. Endocrinol Metab Clin North Am. 37(3), 635–646. First citation in articleCrossref MedlineGoogle Scholar

  • 45 van Hummel, H.C. (1975) Chemistry and biosynthesis of plant galactolipids. In: Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products (Zechmeister, L.Herz, W.Grisebach, H.Kirby, G.W.eds.) pp. 267–295. Springer, Vienna. First citation in articleGoogle Scholar

  • 46 Chu, B.S., Rich, G.T., Ridout, M.J., Faulks, R.M., Wickham, M.S., & Wilde, P.J. (2009) Modulating pancreatic lipase activity with galactolipids: effects of emulsion interfacial composition. Langmuir. 25(16), 9352–9360. First citation in articleCrossref MedlineGoogle Scholar

  • 47 Rayner, M., Ljusberg, H., Emek, S.C., Sellman, E., Erlanson-Albertsson, C., & Albertsson, P.A. (2011) Chloroplast thylakoid membrane-stabilised emulsions. J Sci Food Agric. 91(2), 315–321. First citation in articleCrossref MedlineGoogle Scholar

  • 48 Emek, S.C., Akerlund, H.E., Erlanson-Albertsson, C., & Albertsson, P.A. (2013) Pancreatic lipase-colipase binds strongly to the thylakoid membrane surface. J Sci Food Agric. 93(9), 2254–2258. First citation in articleCrossref MedlineGoogle Scholar

  • 49 Birari, R.B., & Bhutani, K.K. (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today. 12(19), 879–889. First citation in articleCrossref MedlineGoogle Scholar

  • 50 Williamson, G. (2013) Possible effects of dietary polyphenols on sugar absorption and digestion. Mol Nutr Food Res. 57(1), 48–57. First citation in articleCrossref MedlineGoogle Scholar

  • 51 Jakobek, L. (2015) Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 175, 556–567. First citation in articleCrossref MedlineGoogle Scholar

  • 52 Maljaars, P.W.J., Peters, H.P.F., Mela, D.J., & Masclee, A.A.M. (2008) Ileal brake: a sensible food target for appetite control. A review. Physiol Behav. 95(3), 271–281. First citation in articleCrossref MedlineGoogle Scholar

  • 53 Golding, M., & Wooster, T.J. (2010) The influence of emulsion structure and stability on lipid digestion. Curr Opin Colloid Interface Sci. 15(1), 90–101. First citation in articleCrossrefGoogle Scholar

  • 54 Rebello, C.J., O’Neil, C.E., & Greenway, F.L. (2015) Gut fat signaling and appetite control with special emphasis on the effect of thylakoids from spinach on eating behavior. Int J Obes. 39(12), 1679–1688. First citation in articleCrossrefGoogle Scholar

  • 55 Witt, A.A., & Lowe, M.R. (2014) Hedonic hunger and binge eating among women with eating disorders. Int J Eat Disord. 47(3), 273–280. First citation in articleCrossref MedlineGoogle Scholar

  • 56 van Bloemendaal, L., Veltman, D.J., ten Kulve, J.S., Drent, M.L., Barkhof, F., Diamant, M., & IJzerman, R.G. (2015) Emotional eating is associated with increased brain responses to food‐cues and reduced sensitivity to GLP‐1 receptor activation. Obesity. 23(10), 2075–2082. First citation in articleCrossref MedlineGoogle Scholar

  • 57 Mansur, R.B., Brietzke, E., & McIntyre, R.S. (2015) Is there a “metabolic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev. 52, 89–104. First citation in articleCrossref MedlineGoogle Scholar

  • 58 Erlanson-Albertsson, C., Albertsson, P.-Å., Gustafsson, K., Montelius, C., Emek, S.C., Köhnke, R., & Landin-Olsson, M. (2012) Thylakoids promote satiety in healthy humans. Metabolic effects and mechanisms. In Symposium on Agricultural, Food Derived Natural Products for Preventing, Combating Disease (Vol. 1093, pp. 521–531). American Chemical Society. First citation in articleCrossrefGoogle Scholar

  • 59 Dashty, M. (2013) A quick look at biochemistry: carbohydrate metabolism. Clin Biochem. 46(15), 1339–1352. First citation in articleCrossref MedlineGoogle Scholar

  • 60 Farooq, N., Priyamvada, S., Arivarasu, N.A., Salim, S., Khan, F., & Yusufi, A.N.K. (2006) Influence of Ramadan-type fasting on enzymes of carbohydrate metabolism and brush border membrane in small intestine and liver of rat used as a model. Br J Nutr. 96(06), 1087–1094. First citation in articleCrossref MedlineGoogle Scholar

  • 61 Khan, S.A., Priyamvada, S., Arivarasu, N.A., Khan, S., & Yusufi, A.N.K. (2007) Influence of green tea on enzymes of carbohydrate metabolism, antioxidant defense, and plasma membrane in rat tissues. Nutrition. 23(9), 687–695. First citation in articleCrossref MedlineGoogle Scholar

  • 62 Hussin, M., Hamid, A.A., Mohamad, S., Saari, N., Bakar, F., & Dek, S.P. (2009) Modulation of lipid metabolism by Centella asiatica in oxidative stress rats. J Food Sci. 74(2), H72–H78. First citation in articleCrossref MedlineGoogle Scholar

  • 63 Sasikala, S., Lakshminarasaiah, S., & Naidu, M.D. (2015) Effect of Centella asiatica (Linn) leaves on selective mitochondrial and cytosolic enzymes in streptozotocin induced diabetic rats. Int J Pharm Pharm Sci. 7(11), 322–325. First citation in articleGoogle Scholar

  • 64 Kellow, N.J., Coughlan, M.T., & Reid, C.M. (2014) Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 111(07), 1147–1161. First citation in articleCrossref MedlineGoogle Scholar

  • 65 Poutahidis, T., Kleinewietfeld, M., Smillie, C., Levkovich, T., Perrotta, A., Bhela, S., et al. (2013) Microbial reprogramming inhibits Western diet-associated obesity. PLoS One. 8(7), e68596. First citation in articleCrossref MedlineGoogle Scholar

  • 66 Simon, M.C., Strassburger, K., Nowotny, B., Kolb, H., Nowotny, P., Burkart, V., et al. (2015) Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care. 38(10), 1827–1834. First citation in articleCrossref MedlineGoogle Scholar

  • 67 Dagdeviren, S., Jung, D.Y., Lee, E., Friedline, R.H., Noh, H.L., Kim, J.H., et al. (2016) Altered interleukin-10 signaling in skeletal muscle regulates obesity-mediated inflammation and insulin resistance. Mol Cell Biol. MCB.00181–16. First citation in articleGoogle Scholar

  • 68 Bondia-Pons, I., Ryan, L., & Martinez, J.A. (2012) Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem. 68(4), 701–711. First citation in articleCrossref MedlineGoogle Scholar

  • 69 González-Castejón, M., & Rodriguez-Casado, A. (2011) Dietary phytochemicals and their potential effects on obesity: a review. Pharmacol Res. 64(5), 438–455. First citation in articleCrossref MedlineGoogle Scholar

  • 70 Hsu, C.Y., Chao, P.Y., Hu, S.P., & Yang, C.M. (2013) The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food Nutr Sci. 4A(8), 1–8. First citation in articleGoogle Scholar

  • 71 Bergman, M., Perelman, A., Dubinsky, Z., & Grossman, S. (2003) Scavenging of reactive oxygen species by a novel glucurinated flavonoid antioxidant isolated and purified from spinach. Phytochemistry. 62(5), 753–762. First citation in articleCrossref MedlineGoogle Scholar

  • 72 Krinsky, N.I. (1998) The antioxidant and biological properties of the carotenoids. Ann N Y Acad Sci. 854(1), 443–447. First citation in articleCrossref MedlineGoogle Scholar

  • 73 Andersen, A., Bissonnette, E., Drouin, R., & Purcell, M. (2008) Compositions comprising thylakoids useful in the modulation of inflammation process. U.S. Patent No. 7,329,423. U.S. Patent and Trademark Office, Washington, DC. First citation in articleGoogle Scholar

  • 74 Purcell, M. (2014) Process of obtaining thylakoids from photosynthetic organisms; plant fractions obtained from the process; pure thylakoids; and methods of use of thylakoids as ROS scavengers, photo-protectors, biosensors, biofilters and bioreactor. U.S. Patent No. 8,632,824. U.S. Patent and Trademark Office, Washington, DC. First citation in articleGoogle Scholar

  • 75 Ulbricht, C., Bramwell, R., Catapang, M., Giese, N., Isaac, R., Le, T.D., et al. (2014) An evidence-based systematic review of chlorophyll by the Natural Standard Research Collaboration. J Diet Suppl. 11(2), 198–239. First citation in articleCrossref MedlineGoogle Scholar

  • 76 Olofsson, P., Hultqvist, M., Hellgren, L.I., & Holmdahl, R. (2014) Phytol: a chlorophyll component with anti-inflammatory and metabolic properties. Recent Advances in Redox Active Plant and Microbial Products pp. 345–359. Springer, Netherlands. First citation in articleCrossrefGoogle Scholar

  • 77 Grygiel-Górniak, B. (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications-a review. Nutr J. 13(1), 17. First citation in articleCrossref MedlineGoogle Scholar

  • 78 Schluter, A., Giralt, M., Iglesias, R., & Villarroya, F. (2002) Phytanic acid, but not pristanic acid, mediates the positive effects of phytol derivatives on brown adipocyte differentiation. FEBS Lett. 517(1–3), 83–86. First citation in articleCrossref MedlineGoogle Scholar

  • 79 Schlüter, A., Barberá, M.J., Iglesias, R., Giralt, M., & Villarroya, F. (2002) Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation. Biochem J. 362(1), 61–69. First citation in articleCrossref MedlineGoogle Scholar

  • 80 Heim, M., Johnson, J., Boess, F., Bendik, I., Weber, P., Hunziker, W., & Flühmann, B. (2002) Phytanic acid, a natural peroxisome proliferator-activated receptor (PPAR) agonist, regulates glucose metabolism in rat primary hepatocytes. FASEB J. 16(7), 718–720. First citation in articleCrossref MedlineGoogle Scholar

  • 81 Goto, T., Takahashi, N., Kato, S., Egawa, K., Ebisu, S., Moriyama, T., & Kawada, T. (2005) Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes. Biochem Biophys Res Commun. 337(2), 440–445. First citation in articleCrossref MedlineGoogle Scholar

  • 82 Che, B.N., Oksbjerg, N., Hellgren, L.I., Nielsen, J.H., & Young, J.F. (2013) Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes. Lipids Health Dis. 12(1), 14. First citation in articleCrossref MedlineGoogle Scholar

  • 83 Monsalve, F.A., Pyarasani, R.D., Delgado-Lopez, F., & Moore-Carrasco, R. (2013) Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm. 2013, 549627. First citation in articleCrossref MedlineGoogle Scholar

  • 84 Stenkula, K.G., Stenblom, E.L., Montelius, C., Egecioglu, E., & Erlanson-Albertsson, C. (2017) Thylakoids reduce body fat and fat cell size by binding to dietary fat making it less available for absorption in high-fat fed mice. Nutr Metab (Lond). 14(1), 4. First citation in articleCrossref MedlineGoogle Scholar

  • 85 Östbring, K., Rayner, M., Sjöholm, I., Otterström, J., Albertsson, P.Å., Emek, S.C., & Erlanson-Albertsson, C. (2014) The effect of heat treatment of thylakoids on their ability to inhibit in vitro lipase/co-lipase activity. Food Funct. 5(9), 2157–2165. First citation in articleCrossref MedlineGoogle Scholar

  • 86 Filippatos, T.D., Derdemezis, C.S., Gazi, I.F., Nakou, E.S., Mikhailidis, D.P., & Elisaf, M.S. (2008) Orlistat-associated adverse effects and drug interactions. Drug Safety. 31(1), 53–65. First citation in articleCrossref MedlineGoogle Scholar