Skip to main content
Log in

Superoxide Dismutase Transgenes in Sugarbeets Confer Resistance to Oxidative Agents and the Fungus C. beticola

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Sugarbeets carrying superoxide dismutase transgenes were developed in order to investigate the possibility of enhancing their resistance to oxidative stress. Binary T-DNA vectors carrying the chloroplastic and cytosolic superoxide dismutase genes from tomato, were used for Agrobacterium-mediated transformation of sugarbeet petioles. The transgenic plants were subjected to treatments known to cause oxidative stress, such as the herbicide methyl viologen and a natural photosensitizer toxin produced by the fungus Cercospora beticola, namely cercosporin. The transgenic plants exhibited increased tolerance to methyl viologen, to pure cercosporin, as well as to leaf infection with the fungus C. beticola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107: 1049–1054.

    CAS  PubMed  Google Scholar 

  • Arisi AC, Cornic G, Jouanin L and Foyer C (1995) Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to prooxidant herbicide methyl viologen. Plant Physiol 117: 565–574.

    Google Scholar 

  • Baum JA and Scandalios JG (1979) Developmental expression and intracellular localization of superoxide dismutase in maize. Differentiation 13: 133–140.

    CAS  Google Scholar 

  • Bowler C, Alliotte T, De Loose M, Van Montagu M and Inze D (1989) The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J 8: 31–38.

    CAS  PubMed  Google Scholar 

  • Bowler C, Slooten L, Vandenbraden S, De Rycke R, Botterman, J, Sybesma C et al. (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10: 1723–1732.

    CAS  PubMed  Google Scholar 

  • Bowler C, Van Montagu M and Inze D (1992) Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 43: 83–116.

    CAS  Google Scholar 

  • Bradford MM (1976) Superoxide dismutase. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brisson LF, Zelitch I and Havir EA (1998) Manipulation of catalase levels produces altered photosynthesis in transgenic tobacco plants. Plant Physiol 116: 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Cannon RE, White JA and Scandalios JG (1987) Cloning of cDNA for maize superoxide dismutase 2 (SOD2). Proc Natl Aca Sci USA 84: 179–183.

    CAS  Google Scholar 

  • Daub ME (1982) Cercosporin, a photosensitizing toxin from Cercospora species. Phytopathology 72: 370–374.

    CAS  Google Scholar 

  • Daub ME and Hangarter RP (1983) Production of singlet oxygen and superoxide by the fungal toxin, cercosporin. Plant Physiol 73: 855–857.

    CAS  Google Scholar 

  • Dellaporta SL, Wood J and Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1: 19–21.

    CAS  Google Scholar 

  • Karaoglanidis SG (2000) Resistance of C. beticola to triazole fungicides. PhD Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece.

    Google Scholar 

  • McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D et al. (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103: 1155–1163.

    Article  CAS  PubMed  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E and Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111: 1177–1181.

    CAS  PubMed  Google Scholar 

  • Murashige T and Skoog F (1962) A revised medium for rapid growth and bioassays with tissue cultures. Physiol Plant 15: 473–497.

    CAS  Google Scholar 

  • Payton P, Allen RD, Trolinder N and Holaday AS (1997) Overexpression of chloroplast-targeted Mn superoxide dismutase in cotton (Gossypium hirsutum L, cv. Coker 312) does not alter the reduction of photosynthesis after short exposures to low temperature and high light intensity. Photosynth Res 52: 233–244.

    Article  CAS  Google Scholar 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S et al. (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases. Theor Appl Genet 85: 568–576.

    Article  CAS  Google Scholar 

  • Perl-Treves R, Nacmias B, Aviv D, Zeelon EP, Galun E (1988) Isolation of two cDNA clones from tomato containing two different superoxide dismutase sequences. Plant Mol Biol 11: 609–623.

    Article  CAS  Google Scholar 

  • Pitcher LH, Brennan E, Hurley A, Dunsmuir P, Tepperman JM and Zilinskas BA (1991) Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. In: Pell E and Steffen K (eds), Active Oxygen/Oxidative Stress and Plant Metabolism. (pp. 271–273). American Society of Plant Physiologists, Rockville, MD.

    Google Scholar 

  • Rautela GS and Payne MG (1970) The relationship of peroxidase and ortho-diphenol oxidase to resistance of sugarbeets to Cercospora leaf spot. Phytopathology 60: 239–245.

    Google Scholar 

  • Scandalios JG (1996) Environmental stress, genomic responses to. In: Meyers RA (ed), The Encyclopedia of Molecular Biology & Molecular Medicine. (pp. 216–222) VCH Publishers, New York, NY.

    Google Scholar 

  • Scioli JR and Zilinskas BA (1988) Cloning and characterization of a cDNA encoding the chloroplastic copper/zinc-superoxide dismutase from pea. Proc Natl Acad Sci USA 85: 7661–7665.

    CAS  PubMed  Google Scholar 

  • Sen Gupta A, Heinen LJ, Holaday AS, Burke JJ and Allen DR (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90: 1629–1633.

    CAS  Google Scholar 

  • Shane WW and Teng PS (1992) Impact of Cercospora leaf spot on root weight, sugar yield and purity of Beta vulgaris. Plant Dis 76: 812–820.

    CAS  Google Scholar 

  • Slooten L, Capiau K, Van Camp W, Van Montagu M, Sybesma C and Inze D (1995) Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiol 107: 737–750.

    CAS  PubMed  Google Scholar 

  • Spychalla PJ and Bevan WM (1993) Agrobacterium-mediated transformation of potato stem and tuber tissue, regeneration and PCR screening for transformation. In: Plant Tissue Culture Manual B11: 1–17, Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T et al. (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148: 131–138.

    Article  CAS  Google Scholar 

  • Tepperman JM and Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14: 501–511.

    Article  CAS  PubMed  Google Scholar 

  • Tepperman JM, Katayama C and Dunsmuir P (1988) Cloning and nucleotide sequence of a petunia gene encoding a chloroplast-localized superoxide dismutase. Plant Mol Biol 11: 871–882.

    CAS  Google Scholar 

  • Tertivanidis K (2001) Regeneration and genetic transformation of sugarbeet (Beta vulgaris L.) by Agrobacterium tumefaciens. PhD Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece.

    Google Scholar 

  • Trolinder NL and Allen RD (1994) Expression of chloroplast-localized MnSOD in transgenic cotton. J Cell Biochem 18A: 97–101.

    Google Scholar 

  • Tsang EWT, Bowler C, Herouart D, Van Camp W, Villaroel R, Genetello C et al. (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3: 783–792.

    Article  CAS  PubMed  Google Scholar 

  • Tuite J (1969) Plant Pathological Methods. Burgess Publishing Company Minneapolis, MN.

    Google Scholar 

  • Van Breusegem F, Slooten L, Stassart JM, Botterman J, Moens T, Van Montagu M et al. (1999) Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J Exp Bot 50: 71–78.

    Article  Google Scholar 

  • Van Camp W, Bowler C, Villarroel R, Tsang EWT, Van Montagu M and Inze D (1990) Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proc Natl Acad Sci USA 87: 9903–9907.

    CAS  PubMed  Google Scholar 

  • Van Camp W, Willekens H, Van Montagu M, Inze D, Reupold-Popp P, Sandermann H et al. (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/technology 12: 165–168.

    CAS  Google Scholar 

  • White JA and Scandalios JG (1998) Isolation and characterization of a cDNA for mitochondrial manganese superoxide dismutase 3 (SOD-3) of maize and its relation to other manganese superoxide dismutases. Biochim Biophys Acta 951: 61–70.

    Google Scholar 

  • White DA and Zilinskas BA (1991) Nucleotide sequence of a complementary DNA-encoding pea cytosolic copper/zinc superoxide dismutase. Plant Physiol 96: 1391–1392.

    CAS  Google Scholar 

  • Williamson DJ and Scandalios JG (1993) Plant antioxidant gene responses to fungal pathogens. Trends Microbiol 1(6): 239–245.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Tsaftaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tertivanidis, K., Goudoula, C., Vasilikiotis, C. et al. Superoxide Dismutase Transgenes in Sugarbeets Confer Resistance to Oxidative Agents and the Fungus C. beticola . Transgenic Res 13, 225–233 (2004). https://doi.org/10.1023/B:TRAG.0000034610.35724.04

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TRAG.0000034610.35724.04

Navigation