Skip to main content
Log in

Nanoparticles in Catalysis

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this article, we report studies of two new forms of highly active supported catalysts. First, those derived from supported carbonylate clusters—nanocatalysts and second, those produced from the heterogenization of known chiral homogeneous systems.

The utilization of established cluster compounds of precisely known composition and structure have proved invaluable in the preparation of mixed metal nanoparticles of well-defined composition. The attachment of these nanoparticles to the inner walls of mesoporous silica has led to the development of highly active and effective catalysts for a series of hydrogenation reactions, emphasizing the enhanced reactivity of these metal systems as a consequence of their size and of the low coordination numbers of the metal atoms involved. These attributes combined with the relative ease of characterization of both the active sites and their location has led to a detailed examination of the role of these nanosystems in a new approach to clean technology. In an alternative strategy, the use of heterogenized homogeneous chiral catalysts based on the ferrocenyl moiety and diamino ligands and linked to the inner surface of mesoporous materials either by a direct chemical bond or by an ionic interaction has also been explored. These catalysts have been shown to be highly effective in the enantioselective synthesis of organic compounds. Significantly, we have found that the mesopore (usually MCM-41) imposes spatial restrictions arising from the concavity of the inner surface and leads to greatly enhanced enantioselective (ee) performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications (Wiley, New York, 1983).

    Google Scholar 

  2. J.H. Sinfelt, Int. Rev. Phys. Chem. 7 (1988) 281.

    Google Scholar 

  3. D.S. Shephard, T. Maschmeyer, G. Sankar, J.M. Thomas, D. Ozkaya, B.F.G. Johnson, R. Raja, R.D. Oldroyd and R.G. Bell, Chem. Eur. J. 4 (1998) 1214.

    Google Scholar 

  4. B.F.G. Johnson, R. Raja, G. Sankar, S. Hermans, D.S. Shephard, S.T. Bromley, J.M. Thomas and T. Maschmeyer, J. Chem. Soc. Chem Comm. (1999) 1571.

  5. B.F.G. Johnson, R. Raja, T. Khimyak, J.M. Thomas and S. Hermans, Angew. Chem. Int. Ed. Engl. 40 (2001) 4638.

    PubMed  Google Scholar 

  6. B.F.G. Johnson, S. Herman, R. Raja, J.M. Thomas, G. Sankar and D. Gleeson, Angew. Chem. Int. Ed. Engl. 40 (2001) 1211.

    PubMed  Google Scholar 

  7. W. Zhou, J.M. Thomas, D.S. Shephard, B.F.G. Johnson, D. Ozkaya, T. Maschmeyer, R.G. Bell and Q. Ge, Science 280 (1998) 705.

    PubMed  Google Scholar 

  8. M.D. Jones, M.J. Duer, S. Hermans, Y.Z. Khimyak, B.F.G. Johnson and J.M. Thomas, Angew. Chem. Int. Ed. Engl. 41(24) (2002) 4726.

    PubMed  Google Scholar 

  9. S.T. Bromley, G. Sankar, C.R.A. Catlow, T. Maschmeyer, B.F.G. Johnson and J.M. Thomas, Chem. Phys. Lett. 340 (2001) 524.

    Google Scholar 

  10. D. Ozkaya, W. Zhou, J.M. Thomas, P.A. Midgley, V.J. Keast and S. Hermans, Catal. Lett. 60 (1999) 113.

    Google Scholar 

  11. J.M. Thomas, O. Terasaki, P.L. Gai, W. Zhou and J. Conzalez-Calbert, Acc. Chem. Res. 34 (2001) 583.

    PubMed  Google Scholar 

  12. D.S. Shephard, T. Maschmeyer, B.F.G. Johnson, J.M. Thomas, G. Sankar, D. Ozkaya, W. Zhou, R.D. Oldroyd and R.G. Bell, Angew. Chem. Int. Ed. Engl. 36(20) (1997) 2242.

    Google Scholar 

  13. M.S. Nashner, D.M. Somerville, P.D. Lane, D.L. Adler, J.R. Shapley and R.G. Nuzzo, J. Am. Chem. Soc. 118 (1996) 12964.

    Google Scholar 

  14. C.W. Hills, M.S. Nashner, A.I. Frenkel, J.R. Shapley and R.G. Nuzzo, Langmuir 15 (1999) 690.

    Google Scholar 

  15. M.S. Nashner, A.I. Frenkel, D.L. Adler, J.R. Shapley and R.G. Nuzzo, J. Am. Chem. Soc. 119 (1997) 7760.

    Google Scholar 

  16. M.S. Nashner, A.I. Frenkel, D.M. Somerville, C.W. Hills, J.R. Shapley and R.G. Nuzzo, J. Am. Chem. Soc. 120 (1998) 8093.

    Google Scholar 

  17. F. Schweyer, P. Braunstein, C. Estournes, J. Guille, H. Kessler, J.-L. Paillaud and J. Rose, Chem. Commun. (2000) 1271.

  18. J.G.C. Shen and M. Ichikawa, J. Phys. Chem., B 102 (1998) 5602.

    Google Scholar 

  19. M. Ichikawa, Adv. Catal. 38 (1992) 282.

    Google Scholar 

  20. J.M. Thomas, R. Raja, B.F.G. Johnson, T.J. O'Connell, G. Sankar and T. Khimyak, Chem. Commun. (2003) 1126.

  21. B.F.G. Johnson, S.A. Raynor, D.B. Brown, D.S. Shephard, T. Maschmeyer, J.M. Thomas, S. Hermans, R. Raja and G. Sankar, J. Mol. Catal. A 182–183 (2002) 89.

    Google Scholar 

  22. S.A. Raynor, J.M. Thomas, R. Raja, B.F.G. Johnson, R.G. Bell and M. Mantle, Chem. Commun. A (2000) 1925.

  23. B.F.G. Johnson, S.A. Raynor, D.S. Shephard, T. Maschmeyer, J.M. Thomas, G. Sankar, S. Bromley, R. Oldroyd, L. Gladden and M. Mantle, Chem. Commun. (1999) 1167.

  24. J.M. Thomas, T. Maschmeyer, B.F.G. Johnson and D.S. Shephard, J. Mol. Catal. A 141 (1999) 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, B.F. Nanoparticles in Catalysis. Topics in Catalysis 24, 147–159 (2003). https://doi.org/10.1023/B:TOCA.0000003086.83434.b6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TOCA.0000003086.83434.b6

Navigation